Answer:
Time required by boat 1 for the round trip is less than that of boat 2.
Hence, boat 1 wins.
Explanation:
Case 1: Boat 1
Speed of boat = 
time = 
While going to another end
time = 
time = 
time = 1 hour
While going back,
time = 
time = 
time = 1 hour
Total time taken by boat 1 is,
Total time by boat 1 = 1 hour + 1 hour = 2 hour
Total time by boat 1 = 2 hour
Total time taken by boat 1 for the round trip is 2 hour.
Case 2: Boat 2
Speed of boat = 
time = 
While going to another end
time = 
time = 
time = 2 hour
While going back,
time = 
time = 
time = 0.66 hour
Total time taken by boat 2 is,
Total time by boat 1 = 2 hour + 0.66 hour
Total time by boat 1 = 2.66 hour
Total time taken by boat 2 for the round trip is 2.66 hour.
Time required by boat 1 for the round trip is less than that of boat 2.
Hence, boat 1 wins.
Answer:
A ratio of equivalent units
Explanation:
A conversion factor is a ratio of equivalent units and depends on which units are to be converted.
For example we want to convert 275 [mm] to inches, so we have to find the right conversion factor to allow us to work that conversion.
275 [mm] = inches = ?
![275 [mm] * \frac{1in}{25.4mm} = 10.82 [in]](https://tex.z-dn.net/?f=275%20%5Bmm%5D%20%2A%20%5Cfrac%7B1in%7D%7B25.4mm%7D%20%3D%2010.82%20%5Bin%5D)
In this case the ratio is 1/25.4 = 0.039 [in/mm]
The moon has a small amount of gravity. Low tides mean the moon is not pulling on the water. High tides mean that the moon is pulling on the water.
The correct answer is:

Let's see why.
1 amu corresponds to the mass of the proton, which is:

if we convert this into energy, using Einstein equivalence between mass and energy, we find:

Now we can convert it into electronvolts:

So, 1 amu = 934 MeV. Therefore, 3 amu corresponds to 3 times this value:
Answer:
K = 588.3 N/m
Explanation:
From a forces diagram, and knowing that for the maximum value of K, the crate will try to rebound back up (Friction force will point downward):
Fe - Ff - W*sin(22) = 0 Replacing Fe = K*X and then solving for X:

By conservation of energy:

Replacing our previous value for X and solving the equation for K, we get maximum value to prevent the crate from rebound:
K = 588.3 N/m