a clock .. and i guess a non functioning clock ?
Answer:
Answer explained below
Explanation:
(a) The rays are diverging near the lens. They change the direction when they passed through the converging lens
(b) If the light rays don't bend they will move away from the optical (principal axis) as the other waves are moving.
(c) If we decrease the distance between lens and light source, most of the rays diverge and no ray converges on the screen even after passing through the lens. Here is a screenshot.
Answer:
x = 11.23 m
Explanation:
For this interesting exercise, we must use angular kinematics, linear kinematics and the relationship between angular and linear quantities.
Let's reduce to SI system units
θ = 155 rev (2pi rad / rev) = 310π rad
α = 2.00rev / s2 (2pi rad / 1 rev) = 4π rad / s²
Let's look for the angular velocity at the time the piece is released, with starting from rest the initial angular velocity is zero (wo = 0)
w² = w₀² + 2 α θ
w =√ 2 α θ
w = √(2 4pi 310pi)
w = 156.45 rad / s
The relationship between angular and linear velocity
v = w r
v = 156.45 0.175
v = 27.38 m / s
In this part we have the linear speed and the height that it travels to reach the floor, so with the projectile launch equations we can find the time it takes to arrive
y =
t - ½ g t²
As it leaves the highest point its speed is horizontal
y = 0 - ½ g t²
t = √ (-2y / g)
t = √ (-2 (-0.820) /9.8)
t = 0.41 s
With this time we calculate the horizontal distance, because the constant horizontal speed
x = vox t
x = 27.38 0.41
x = 11.23 m
Answer:
C1/C2 = 0.213 or C2/C1 = 4.68
Explanation:
Please refer to the attached image for step by step explanation.
Answer:
1. a
2. b
3. b
Explanation:
1.
Resistance is the property of a conductor to offer resistance to the flow of current. The lower the resistance better is the conductivity of wire.
We know that the resistance of a wire depends on several factor which are inter-connected by an equation as:
where:
R = resistance of the wire
length of the wire
cross sectional area of the wire
from the above relation we observe that

- Also when the temperature of the wire is significantly high then the lattice vibration cause obstruction in the path of the flowing charges and reduce the current flow.
2.
As the collision between the electrons and protons increases the speed of the flow of charges will decrease because the opposite charges attract each other and as we know that electrical current is the rate of flow of charge.
3.
Heating up of wire due to sunlight will cause lattice vibration in the conductor and will obstruct the movement of the charges which build up electric current, hence increasing the resistance of conductivity.