Answer:
α = 13.7 rad / s²
Explanation:
Let's use Newton's second law for rotational motion
∑ τ = I α
we will assume that the counterclockwise turns are positive
F₁ 0 + F₂ R₂ - F₃ R₃ = I α
give us the cylinder moment of inertia
I = ½ M R₂²
α = (F₂ R₂ - F₃ R₃) 
let's calculate
α = (24 0.22 - 13 0.10)
2/12 0.22²
α = 13.7 rad / s²
Answer: Physical changes in nature could then be erosion in a mountain, the melting of snow, and a river freezing over from the cold. Since none of these changes affect the chemical composition of the mountain, the snow, or the river, they are physical changes.
Explanation:
Answer:
velocity = 62.89 m/s in 58 degree measured from the x-axis
Explanation:
Relevant information:
Before the collision, asteroid A of mass 1,000 kg moved at 100 m/s, and asteroid B of mass 2,000 kg moved at 80 m/s.
Two asteroids moving with velocities collide at right angles and stick together. Asteroid A initially moving to right direction and asteroid B initially move in the upward direction.
Before collision Momentum of A = 1000 x 100 =
kg - m/s in the right direction.
Before collision Momentum of B = 2000 x 80 = 1.6 x
kg - m/s in upward direction.
Mass of System of after collision = 1000 + 2000 = 3000 kg
Now applying the Momentum Conservation, we get
Initial momentum in right direction = final momentum in right direction =
And, Initial momentum in upward direction = Final momentum in upward direction = 1.6 x
So,
=
m/s
and
m/s
Therefore, velocity is = 
= 
= 62.89 m/s
And direction is
tan θ =
= 1.6
therefore, 
=
from x-axis
The best and most correct answer among the choices provided by your question is the third choice or letter C.
<span>The statement "Your hypothesis must be testable." is true about the scientific process.
</span>I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
a) 
b) 
c) 
Explanation:
From the question we are told that
Distance to Betelgeuse 
Mass of Rocket 
Total Time in years traveled 
Total energy used by the United States in the year 2000 
Generally the equation of speed of rocket v mathematically given by


where




Therefore


b)
Generally the equation of the energy E required to attain prior speed mathematically given by


c)Generally the equation of the energy
required to accelerate the rocket mathematically given by


