The required mole ratio of NH₃ to N₂ in the given chemical reaction is 2:4.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the number of entities present on the reaction before and after the reaction.
Given chemical reaction is:
4NH₃ + 3O₂ → 2N₂ + 6H₂O
From the stoichiometry of the reaction it is clear that:
4 moles of NH₃ = produces 2 moles of N₂
Mole ratio NH₃ to N₂ is 2:4.
Hence required mole ratio is 2:4.
To know more about mole ratio, visit the below link:
brainly.com/question/504601
What do you mean by unlock all of them? Please explain
Answer:
If something is in a solid state of matter, it has a definite shape and volume. The volume of an object is the amount of space it occupies. A block of wood placed on a table retains its shape and volume, therefore, it is an example of a solid. If a liquid is poured on that same table, there are very different results
Explanation:
Answer:
d. The gold(III) ion is most easily reduced.
Explanation:
The standard reduction potentials are
Au³⁺ + 3e⁻ ⟶ Au; 1.50 V
Hg²⁺ + 2e⁻ ⟶ Hg; 0.85 V
Zn²⁺ + 2e⁻ ⟶ Zn; -0.76 V
Na⁺ + e⁻ ⟶ Na; -2.71 V
A <em>more positive voltage</em> means that there is a <em>stronger driving force</em> for the reaction.
Thus, Au³⁺ is the best acceptor of electrons.
Reduction Is Gain of electrons and, Au³⁺ is gaining electrons, so
Au³⁺ is most easily reduced.
Answer:
Rate of formation of SO₃
= 7.28 x 10⁻³ M/s
Explanation:
According to equation 2 SO₂(g) + O₂(g) → 2 SO₃(g)
Rate of disappearance of reactants = rate of appearance of products
⇒
-----------------------------(1)
Given that the rate of disappearance of oxygen =
= 3.64 x 10⁻³ M/s
So the rate of formation of SO₃
= ?
from equation (1) we can write
![\frac{d[SO_{3}] }{dt} = 2 [-\frac{d[O_{2}] }{dt} ]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BSO_%7B3%7D%5D%20%7D%7Bdt%7D%20%3D%202%20%5B-%5Cfrac%7Bd%5BO_%7B2%7D%5D%20%7D%7Bdt%7D%20%5D)
⇒
= 2 x 3.64 x 10⁻³ M/s
⇒
= 7.28 x 10⁻³ M/s
∴ So the rate of formation of SO₃
= 7.28 x 10⁻³ M/s