Answer:
152 kPa = Partial pressure O₂
Explanation:
Data by percent is the molar fraction . 100.
Molar fraction of Helium = 32/ 100 → 0.32
Molar fraction of O₂ = 68/100 → 0.68
Sum of molar fractions in a mixture = 1
0.68 + 0.32 = 1
If we apply the molar fraction, we can determine the partial pressure.
Mole fraction = Partial pressure / Total pressure
0.32 = Partial pressure O₂ / 475kPa → 0.32 . 475 kPa = Partial pressure O₂
152 kPa = Partial pressure O₂
Answer:
I believe the molecular formula is MnBr2·4H2O or Br2H8MnO4
Explanation:
Answer:
protons
Explanation:
An element, by definition, always has the same number of protons. Sodium, element 11, has 11 protons. Anything with 11 protons is a sodium atom, regardless of the number of neutrons, electrons, or politicians.
We have to know final temperature of the gas after it has done 2.40 X 10³ Joule of work.
The final temperature is: 75.11 °C.
The work done at constant pressure, W=nR(T₂-T₁)
n= number of moles of gases=6 (Given), R=Molar gas constant, T₂= Final temperature in Kelvin, T₁= Initial temperature in Kelvin =27°C or 300 K (Given).
W=2.4 × 10³ Joule (Given)
From the expression,
(T₂-T₁)=
(T₂-T₁)= 
(T₂-T₁)= 48.11
T₂=300+48.11=348.11 K= 75.11 °C
Final temperature is 75.11 °C.