Explanation:
the air particales are always moving so it also takes the smell of the chesse with it and sreads everywhere in the house.
Answer:
(a) rate = 4.82 x 10⁻³s⁻¹ [N2O5]
(b) rate = 1.16 x 10⁻⁴ M/s
(c) rate = 2.32 x 10⁻⁴ M/s
(d) rate = 5.80 x 10⁻⁵ M/s
Explanation:
We are told the rate law is first order in N₂O₅, and its rate constant is 4.82 x 10⁻³s⁻¹ . This means the rate is proportional to the molar concentration of N₂O₅, so
(a) rate = k [N2O5] = 4.82 x 10⁻³s⁻¹ x [N2O5]
(b) rate = 4.82×10⁻³s⁻¹ x 0.0240 M = 1.16 x 10⁻⁴ M/s
(c) Since the reaction is first order if the concentration of N₂O₅ is double the rate will double too: 2 x 1.16 x 10⁻⁴ M/s = 2.32 x 10⁻⁴ M/s
(d) Again since the reaction is halved to 0.0120 M, the rate will be halved to
1.16 x 10⁻⁴ M/s / 2 = 5.80 x 10⁻⁵ M/s
Answer:i hope im not too late
Explanation:
4CO2 also known as 4CO2 is a chemical compound occurring as an acidic colorless gas with a density about 53% higher than that of dry air. Carbon dioxide molecules consist of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere as a trace gas. It also helps trap earths heat inside the earth so i doesnt escape back to outer space.
yourwelcome goodluck ill peel my eyes out if need help again- an 8th grader :p
The required mass of calcium bromide is 35.98 grams.
<h3>What is molarity?</h3>
Molarity is any solution is define as the number of moles of solute present in per liter of solution as;
M = n/V, where
- M = molarity = 4M
- V = volume = 45mL = 0.045L
Moles will be calculated by using the above equation as:
n = (4)(0.045) = 0.18 mole
Relation between the mass and moles of any substance will be represented as:
n = W/M, where
- W = given mass
- M = molar mass
Mass of CaBr₂ = (0.18mol)(199.89g/mol) = 35.98g
Hence required mass of CaBr₂ is 35.98 grams.
To know more about molarity, visit the below link:
brainly.com/question/22283918
#SPJ1
Following reaction arise between Br2 and Cl2
Br2 + Cl2 → 2BrCl
(1mole) (1mole) (2moles)
From above balanced reaction, it can be seen that 1 mole of Br2 reacts with 1 mole of Cl2 to form 2 mole of BrCl
Thus, when <span>2.74 mol Cl2 reacts with excess Br2, 2.74 X 2 = 5.48 moles of BrCl will be formed. </span>