I think this is the answer. I hope you can understand.
Answer:
V=4.7m/s
Explanations:
Let Ma mass of cat A=7kg
Va velocity of cat A=7m/s
Mb mass of cat b=6.1kg
VB velocity of cat b=2m/s
From conservation of linear momentum
MaVa+MbVb=(Ma+Mb)V
7*7+6.1*2=(7+6.1)V
61.2=13.1V
V=4.7m/s
Answer:
The box will be moving at 0.45m/s. The solution to this problem requires the knowledge and application of newtons second law of motion and the knowledge of linear motion. The vertical component of the force Fp acts vertically upwards against the directio of motion. This causes a constant upward force of 23sin45° to act on the box. Fhe frictional force of 13N also acts vertically upwards and so two forces act upwards against rhe force of gravity resulting un a net force of 0.7N acting kn the box. This corresponds to an acceleration of 0.225m/s². So in w.0s after i start to push v = 0.45m/s.
Explanation:
Answer:
v = 23.66 m/s
Explanation:
recall that one of the equations of motion may be expressed:
v² = u² + 2as,
Where
v = final velocity (we are asked to find this)
u = initial velocity = 0 m/s since we are told that it starts from rest
a = acceleration = 0.56m/s²
s = distance traveled = given as 500m
Simply substitute the known values into the equation:
v² = u² + 2as
v² = 0 + 2(0.56)(500)
v² = 560
v = √560
v = 23.66 m/s
Higher pitched sounds produce waves which are closer together than for lower pitched sounds. A smaller triangle or cymbal will make a relatively higher pitch note