Answer:
amount of charge
Explanation:
Oxygen and sulfur are both in Group 16, which means they have a -2 charge. They have two more electrons than protons, making the charge of the ion negative.
Hope that helps.
Answer : The final temperature of the solution in the calorimeter is, 
Explanation :
First we have to calculate the heat produced.

where,
= enthalpy change = -44.5 kJ/mol
q = heat released = ?
m = mass of
= 1.52 g
Molar mass of
= 40 g/mol

Now put all the given values in the above formula, we get:


Now we have to calculate the final temperature of solution in the calorimeter.

where,
q = heat produced = 1.691 kJ = 1691 J
m = mass of solution = 1.52 + 35.5 = 37.02 g
c = specific heat capacity of water = 
= initial temperature = 
= final temperature = ?
Now put all the given values in the above formula, we get:


Thus, the final temperature of the solution in the calorimeter is, 
The correct answer is option c, that is, nucleus.
A usual atom comprises three subatomic particles, that is, the neutrons, protons, and electrons. According to Bohr's model, the majority of the mass of an atom is in the nucleus, that is, a small, dense region at the center of each atom, comprising nucleons.
The nucleons incorporate neutrons and protons. All the positive charge of an atom is found in the nucleus and arises from the protons, the neutrons are neutrally-charged, and the electrons are the negatively charged particles found outside of the nucleus.
NH4I (aq) + KOH (aq) in chemical equation gives
NH4I (aq) + KOH (aq) = KI (aq) + H2O(l) + NH3 (l)
Ki is in aqueous state H2o is in liquid state while NH3 is in liquid state
from the equation above 1 mole of NH4I (aq) react with 1 mole of KOH(aq) to form 1mole of KI(aq) , 1mole of H2O(l) and 1 Mole of NH3(l)