A sample of a compound contains 60.0 g C and 5.05 g H.
divide by molar mass of C(12) and H(1) to get molar ratio
C: 60/12=5 and H: 5/1=5
so C:H=5:5=1:1
total molar mass=78
divide by 1C+1H to find the formula: 78/(12+1)=78/13=6
compound is C6H6
Answer:
Option C. 4.03 g
Explanation:
Firstly we analyse data.
12 % by mass, is a sort of concentration. It indicates that in 100 g of SOLUTION, we have 12 g of SOLUTE.
Density is the data that indicates grams of solution in volume of solution.
We need to determine, the volume of solution for the concentration
Density = mass / volume
1.05 g/mL = 100 g / volume
Volume = 100 g / 1.05 g/mL → 95.24 mL
Therefore our 12 g of solute are contained in 95.24 mL
Let's finish this by a rule of three.
95.24 mL contain 12 g of sucrose
Our sample of 32 mL may contain ( 32 . 12) / 95.24 = 4.03 g
A factor that is changed in an experiment is called the Independent Variable.
Answer:
Rb = +1 , Sr = +2, In= +3, Sn = +4, Sb= +5
Explanation:
Formula:
Zeff = Z - S
Z = atomic number
S = number of core shell or inner shell electrons
For Sn:
Electronic configuration:
Sn₅₀ = [Kr] 4d¹⁰ 5s² 5p²
Zeff = Z - S
Zeff = 50 - 46
Zeff = +4
For Rb:
Electronic configuration:
Rb₃₇ = [Kr] 5s¹
Zeff = Z - S
Zeff = 37 - 36
Zeff = +1
For Sb:
Electronic configuration:
Sb₅₁ = [Kr] 4d¹⁰ 5s² 5p³
Zeff = Z - S
Zeff = 51 - 46
Zeff = +5
For In:
Electronic configuration:
In₄₉ = [Kr] 4d¹⁰ 5s² 5p¹
Zeff = Z - S
Zeff = 49 - 46
Zeff = +3
For Sr:
Electronic configuration:
Sr₃₈= [Kr] 5s²
Zeff = Z - S
Zeff = 38 - 36
Zeff = +2
Answer:
An organ is a part of the body that carries out its main function. Most organs are made out of tissues.
Explanation: