Answer:
Na⁺ tends to interact with the hardest base, which is water. Ag⁺ tends to interact with the softest (hardless) base, which is Cl⁻.
Explanation:
The HSAB concept says that hard acids are small ions with low electronegativity, while hard bases are electron donating groups with high electronegativity and low polarizability. The HSAB concept also says that hard acids will tend to react with hard bases. The opposite is valid for soft acids and soft bases.
Na⁺ is a hard acid
Ag ⁺ is a soft acid
Cl⁻ is a hard base
H₂O is a harder base than Cl⁻
Therefore, when in water, the Na⁺ tends to react with water, because it is a harder base than Cl⁻. However, as Ag⁺ is a soft acid, it will tend to stay with the less hard base, which is Cl⁻.
Answer:
can u tell the question in english
9 x 3 = 27
27 moles of O reacted
27 / 2 = 13.5 O2 reacted
round up to 14 moles of O2
Depends on where the object is. On earth, moon , or somewhere without any other mass (theoretically). I think you mean how much does weigh on earth. So, the average gravitational acceleration on earth is : 9.83 m/s^2 To find out how much an object weighs, this is the formula : G=m.g where m is mass of the object g is the gravitational acceleration and G is weight. So, G = 10.9,83 = 98,3 N is the answer.
Answer:
easy
Explanation:
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. This law means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another.