Answer:
Cp = 0.237 J.g⁻¹.°C⁻¹
Explanation:
Amount of energy required by known amount of a substance to raise its temperature by one degree is called specific heat capacity.
The equation used for this problem is as follow,
Q = m Cp ΔT ----- (1)
Where;
Q = Heat = 640 J
m = mass = 125 g
Cp = Specific Heat Capacity = <u>??</u>
ΔT = Change in Temperature = 43.6 °C - 22 °C = 21.6 °C
Solving eq. 1 for Cp,
Cp = Q / m ΔT
Putting values,
Cp = 640 J / (125 g × 21.6 °C)
Cp = 0.237 J.g⁻¹.°C⁻¹
Answer:
Hydrogenation – meaning, to treat with hydrogen – is a chemical reaction between molecular hydrogen and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds
Explanation:
Answer:
molar composition for liquid
xb= 0.24
xt=0.76
molar composition for vapor
yb=0.51
yt=0.49
Explanation:
For an ideal solution we can use the Raoult law.
Raoult law: in an ideal liquid solution, the vapor pressure for every component in the solution (partial pressure) is equal to the vapor pressure of every pure component multiple by its molar fraction.
For toluene and benzene would be:

Where:
is partial pressure for benzene in the liquid
is benzene molar fraction in the liquid
vapor pressure for pure benzene.
The total pressure in the solution is:
And
Working on the equation for total pressure we have:
Since
We know P and both vapor pressures so we can clear
from the equation.
So
To get the mole fraction for the vapor we know that in the equilibrium:
So
Something that we can see in these compositions is that the liquid is richer in the less volatile compound (toluene) and the vapor in the more volatile compound (benzene). If we take away this vapor from the solution, the solution is going to reach a new state of equilibrium, where more vapor will be produced. This vapor will have a higher molar fraction of the more volatile compound. If we do this a lot of times, we can get a vapor that is almost pure in the more volatile compound. This is principle used in the fractional distillation.
The two correct options are Poison dart frog and Boa constrictor. Both these organisms are pure carnivores which are also known as pure meat eaters in the food web. Carnivores are organisms in the food chain that only meat-eaters and never take any type of vegetation in their diet.
Explanation:
- A Poison dart frog purely survives on meat (meat- eater).
- Long sticky tongues are used to catch their prey such as ants, flies, insects.
- Since they produce high toxin levels, it has very few predators in the wild.
- Boa constrictor is also an organism that eats only meat.
- While they are young they eat prey like rats, squirrels and mice.
- The type of attack used by a boa constrictor is an ambush attack type. It attacks its preys using the surprise factor.
Radioactivity another name for radioactive decay. Radioactivity refers to particles emitted from nuclei as a result of nuclear instability.