A) c = 3 x 10^8 m/s
f = 7.15 x 10^14 Hz
c = λ x f (=) λ = 3 x 10^8 / 7.15 x 10^14 = 4.19 x 10^-7 m = 419.6 nm
B) E = h f
H = Planck's constant = 6.63 x 10^-34 J/s
E = 6.63 x 10^-34 x 7.15 x 10^14 = 4.74 x 10^-19 J
Read more on Brainly.com -
brainly.com/question/5760368#readmore
Answer:
A. Increasing the temperature will favor forward reaction and more CaCo3 formed.
B. More CaCo3 will be formed.
C. CaCo3 will decrease and more react ants formed.
D. Less CaCo3 will be formed.
E. Iridium is a catalyst so there is no effect
Explanation:
A. Temperature will increase because it's an endothermic reaction.
B. Adding Cao will favor forward reaction and more CaCo3 formed.
C. Removing methane, more react ants are formed and CaCo3 decreases.
D. Irridi is a catalyst so it has no effect on the CaCo3 but only speeds its rate of reaction.
Answer: After 4710 seconds, 1/8 of the compound will be left
Explanation:
Using the formulae
Nt/No = (1/2)^t/t1/2
Where
N= amount of the compound present at time t
No= amount of compound present at time t=0
t= time taken for N molecules of the compound to remain = 4710 seconds
t1/2 = half-life of compound = 1570 seconds
Plugging in the values, we have
Nt/No = (1/2)^(4710s/1570s)
Nt/No = (1/2)^3
Nt/No= 1/8
Therefore after 4710 seconds, 1/8 molecules of the compound will be left