Answer:
Wavelength of the photon depends on transition from different states.
Explanation:
The wavelength of the photon that is emitted from the atom during the transition depends on the transition from different states. If the photon is emitted from n=4 state to n=3 state, the wavelength of photon is 1875 while on the other hand, if the photon is emitted from n=5 state to n=3 state, the wavelength of photon is 1282. If the photon is emitted from n=3 state to n=2 state, the wavelength of photon is 656.
It will also be halved... but the relationship is with Kelvin not c. So 273 +273 = 546 K. half of that is 273 K, then subtract 273... you get 0 degrees c
Answer:
B. the resonance hybrid of all structures
Explanation:
The idea of resonance is used to explain bonding in compounds where a single structure does not fully account for all the bonding interactions in a molecule.
A number of equivalent structures are then used to show the nature of bonding in such a molecule. Such structures are called resonance structures or canonical structures. None of these structures individually offer a holistic explanation to the bonding interactions in the molecule under study.
However, a hybrid of all the canonical structures does explain the nature of bonding in the molecule.
Answer:
Sunlight
Water
And carbon dioxide
Additional information :
6CO2 + 6H2O → C6H12O6 + 6O2