Answer:
T=1.384×10⁶seconds
Explanation:
Given data
p (Intensity)=1.30 kw/m²
E (Energy)=1.8×10⁹ J
A (Area)=1.00 m²
T (Time required)=?
Solution
E=PT ................eq(i)
where E is energy
P is radiation power
T is time
Radiating Power is given as
P=pA
Where p is intensity
A is Area
Put P=pA in eq(i) we get
E=pAT
T=E/pA

Answer:
The answer is
<h2>10 m/s²</h2>
Explanation:
To find the acceleration of an object given the force and mass we use the formula
<h3>

</h3>
From the question
mass of object = 50 kg
force = 500 N
So the acceleration is
<h3>

</h3>
We have the final answer as
<h3>10 m/s²</h3>
Hope this helps you
210 Pb ---> -ie + 210 B:
84 8.3
One possible consequence is that the warmer temperature cause the polar ice to melt even faster
The magnitude of the magnetic force per unit length on the top wire is
2×10⁻⁵ N/m
<h3>How can we calculate the magnitude of the magnetic force per unit length on the top wire ?</h3>
To calculate the magnitude of the magnetic force per unit length on the top wire, we are using the formula
F= 
Here we are given,
= magnetic permeability
= 4
×10⁻⁷ H m⁻¹
If= 12 A
d= distance from each wire to point.
=0.12m
Now we put the known values in the above equation, we get
F= 
Or, F = 
Or, F= 2×10⁻⁵ N/m.
From the above calculation, we can conclude that the magnitude of the magnetic force per unit length on the top wire is 2×10⁻⁵ N/m.
Learn more about magnetic force:
brainly.com/question/2279150
#SPJ4