I think the correct answer from the choices listed above is option B. A parallel circuit differ from a series circuit in a sense that a <span>series circuit has one path for electrons, but a parallel circuit has more than one path. In a parallel circuit there two or more paths for current to flow while a series circuit only has one.</span>
Explanation:
According to Newton's second law of motion, the rate of change of momentum is directly proportional to the applied unbalanced force. The mathematical expression is given by:
Where
F is the applied force
m is the mass of the object
v is the velocity with which it is moving
Momentum of a particle is given by the product of mass and velocity as :
Hence, this is the required solution.
Although many characteristics are common<span> throughout the </span>group<span>, the heavier metals such as Ca, Sr, Ba, and Ra are almost as reactive as the </span>Group<span> 1 Alkali Metals. All the </span>elements<span> in </span>Group 2 have two<span> electrons in their valence shells, giving them an oxidation state of +</span><span>2.</span>
<h2>
Answer: </h2><h2>
- Jupiter has orbiting moons.</h2><h2>
- The Sun has sunspots and rotates on its axis.</h2><h2>
- The Moon has mountains, valleys, and craters.</h2><h2>
- Venus goes through a full set of phases.</h2>
Explanation:
In 1609 Galileo built a telescope, with which he observed mountains and craters on the Moon, discovered Jupiter’s major satellites and the next year he published these discoveries in his book <em>The Sidereal Messenger</em>.
In addition, Galileo observed that Venus presented phases (such as those of the moon) together with a variation in size; observations that are only compatible with the fact that Venus rotates around the Sun and not around Earth. This is because <u>Venus presented its smaller size when it was in full phase and the largest size when it was in the new one, when it is between the Sun and the Earth. </u>
<u />
On the other hand, <u>although Galileo was not the first to observe sunspots</u>, he gave the correct explanation of their existence, which supported the idea that planets revolve around the Sun.
These observations and discoveries were presented by Galileo to the Catholic Church (which supported the geocentric theory at that time) as a proof that completely refuted Ptolemy's geocentric system and affirmed Copernicus' heliocentric theory.