Answer:
because the mass of the copper is higher than the mass of the gold.
Explanation:
So you can use the equation force = mass x acceleration to do 2 x 5 to get 10 N
consider the motion along the horizontal direction :
v₀ = initial velocity in horizontal direction as the ball rolls off the table = 3.0 m/s
X = horizontal displacement of the ball = 2.0 m
a = acceleration along the horizontal direction = 0 m/s²
t = time taken to land = ?
using the kinematics equation
X = v₀ t + (0.5) a t²
2.0 = 3.0 t + (0.5) (0) t²
t = 2/3
consider the motion of the ball along the vertical direction
v₀ = initial velocity in vertical direction as the ball rolls off the table = 0 m/s
Y = vertical displacement of the ball = height of the table = h
a = acceleration along the vertical direction = 9.8 m/s²
t = time taken to land = 2/3
using the kinematics equation
Y = v₀ t + (0.5) a t²
h = 0 t + (0.5) (9.8) (2/3)²
h = 2.2 m
C 2.2 m
Answer:
2.41 L
Explanation:
We can solve the problem by using the ideal gas equation, which can be rewritten as:

where we have:
(initial pressure is stp pressure)
is the initial volume
is the initial temperature (stp temperature)
is the final pressure
is the final volume
is the final temperature
By substituting the numbers inside the formula and solving for V2, we find the final volume:

which corresponds to 2.41 L.