Answer:
C. NaHCO3 → Na2CO3 + H2O + CO2
Explanation:
» For a balanced equation, the number of atoms of reactants and products must be equal.
» In equation C, the reactant side has one sodium atom while ptoduct side has 2 sodium atoms.
» The balanced equations mus be;

Answer:
a) Kb = 10^-9
b) pH = 3.02
Explanation:
a) pH 5.0 titration with a 100 mL sample containing 500 mL of 0.10 M HCl, or 0.05 moles of HCl. Therefore we have the following:
[NaA] and [A-] = 0.05/0.6 = 0.083 M
Kb = Kw/Ka = 10^-14/[H+] = 10^-14/10^-5 = 10^-9
b) For the stoichiometric point in the titration, 0.100 moles of NaA have to be found in a 1.1L solution, and this is equal to:
[A-] = [H+] = (0.1 L)*(1 M)/1.1 L = 0.091 M
pKb = 10^-9
Ka = 10^-5
HA = H+ + A-
Ka = 10^-5 = ([H+]*[A-])/[HA] = [H+]^2/(0.091 - [H+])
[H+]^2 + 10^5 * [H+] - 10^-5 * 0.091 = 0
Clearing [H+]:
[H+] = 0.00095 M
pH = -log([H+]) = -log(0.00095) = 3.02
You have to use the equation ΔG=ΔH-TΔS.
With that equation you know that a reaction with a positive change in enthalpy and positive change in entropy will only be spontaneous at high temperatures since ΔG needs to be negative for a reaction to be spontaneous.
I hopet this helps. Let me know if anything is unclear.
smallest to largest: epoch, period, era, eon
<u>Answer:</u> The volume of the container is 
<u>Explanation:</u>
To calculate the volume of water, we use the equation given by ideal gas, which is:

or,

where,
P = pressure of container = 200 kPa
V = volume of container = ? L
m = Given mass of water = 2.61 kg = 2610 g (Conversion factor: 1kg = 1000 g)
M = Molar mass of water = 18 g/mol
R = Gas constant = 
T = temperature of container = ![200^oC=[200+273]K=473K](https://tex.z-dn.net/?f=200%5EoC%3D%5B200%2B273%5DK%3D473K)
Putting values in above equation, we get:

Converting this into cubic meter, we use the conversion factor:

So, 

Hence, the volume of the container is 