Answer:
the mole fraction of Gas B is xB= 0.612 (61.2%)
Explanation:
Assuming ideal gas behaviour of A and B, then
pA*V=nA*R*T
pB*V=nB*R*T
where
V= volume = 10 L
T= temperature= 25°C= 298 K
pA and pB= partial pressures of A and B respectively = 5 atm and 7.89 atm
R= ideal gas constant = 0.082 atm*L/(mol*K)
therefore
nA= (pA*V)/(R*T) = 5 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 2.04 mole
nB= (pB*V)/(R*T) = 7.89 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 3.22 mole
therefore the total number of moles is
n = nA +nB= 2.04 mole + 3.22 mole = 5.26 mole
the mole fraction of Gas B is then
xB= nB/n= 3.22 mole/5.26 mole = 0.612
xB= 0.612
Note
another way to obtain it is through Dalton's law
P=pB*xB , P = pA+pB → xB = pB/(pA+pB) = 7.69 atm/( 5 atm + 7.89 atm) = 0.612
Answer:
Ionic bonding is the complete transfer of valence electron(s) between atoms.
Explanation:
It is a type of chemical bond that generates two oppositely charged ions. In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.
Answer:
Formed by adding 5 g of sugar to 1 L of water
Explanation:
The substance formed by adding 5 g of suagr to 1 L of water is a mixture.
<em>A mixture is defined as two or more substances that are physically mixed but do not react together. It thus means that the component substances of a mixture can be retrieved through appropriate means of separations.</em>
<u>A mixture of sugar and water can be separated by evaporation. The mixture is heated and the vapor from the boiling water can be condensed to retrieve the water while the residue will give the sugar that was initially dissolved in it. </u>
The products formed from other descriptions in the illustration cannot be separated ordinarily and thus, are not considered to be mixture. The components have been chemically combined together.