It’s frequency is high and microwaves can pass through the atmosphere of the Earth.
The total work done on the car is 784Joule.
<h3>What's the acceleration of the car?</h3>
- As per Newton's equation of motion, V= U+at
- U= initial velocity= 0 m/s
V= vinal velocity= 20m/s
t= time = 10s
a= acceleration
=> a= 20/10= 2m/s²
<h3>What's the distance covered by the car in 10 seconds?</h3>
- As per Newton's equation of motion,
V²-U² = 2aS
- S= distance covered by the car
- So, 20²-0=2×2×S=4S
=> 400= 4S
=> S= 400/4= 100m
<h3>What's the work done on the car due to frictional force?</h3>
Work done by frictional force= frictional force × distance
= (0.2×4×9.8)×100
= 784Joule
Thus, we can conclude that the work done on the car is 784Joule.
Learn more about the work done here:
brainly.com/question/25573309
#SPJ1
Answer:
1.02 m/s²
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
Acceleration can simply be defined as the change of velocity with time. Mathematically, it can be expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 6.6 m/s
Time (t) = 6.5 s
Acceleration (a) =.?
a = (v – u) / t
a = (6.6 – 0) / 6.5
a = 6.6 / 6.5
a = 1.02 m/s²
Therefore, the acceleration of the car is 1.02 m/s²
Lifting a mass to a height, you give it gravitational potential energy of
(mass) x (gravity) x (height) joules.
To give it that much energy, that's how much work you do on it.
If 2,000 kg gets lifted to 1.25 meters off the ground, its potential energy is
(2,000) x (9.8) x (1.25) = 24,500 joules.
If you do it in 1 hour (3,600 seconds), then the average power is
(24,500 joules) / (3,600 seconds) = 6.8 watts.
None of these figures depends on whether the load gets lifted all at once,
or one shovel at a time, or one flake at a time.
But this certainly is NOT all the work you do. When you get a shovelful
of snow 1.25 meters off the ground, you don't drop it and walk away, and
it doesn't just float there. You typically toss it, away from where it was laying
and over onto a pile in a place where you don't care if there's a pile of snow
there. In order to toss it, you give it some kinetic energy, so that it'll continue
to sail over to the pile when it leaves the shovel. All of that kinetic energy
must also come from work that you do ... nobody else is going to take it
from you and toss it onto the pile.
Answer:
150 N
Explanation:
Given that,
- Acceleration (a) = 3 m/s²
- Mass of the bike (m) = 50 kg
We are asked to calculate force required.
F = ma
F = (50 × 3) N
<u>F</u><u> </u><u>=</u><u> </u><u>1</u><u>5</u><u>0</u><u> </u><u>N</u>