Answer:
So mass of the object will be 3.2 kg
Explanation:
We have net force on the object F = 16 N
Acceleration of the object 
We have top find the mass of the object
From newton law of motion we know that force is given by
F = ma , here m is mass and a is acceleration
So 

So mass of the object will be 3.2 kg
Hello. You did not inform the experiment that Arthur is conducting, which makes it impossible for your question to be answered accurately. However, I will try to help you in the best possible way.
The hypothesis is an assumption that is made before the experiment is carried out. This hypothesis is formed with the observation of some phenomenon of nature where the researcher believes that two or more elements interact to form a result. In this case, the experiment is carried out to determine whether the assumption, that is, the hypothesis is false or true. In the event that an experiment determines that the hypothesis is false, two things may have occurred: (a) the experiment was set up, or analyzed incorrectly, (b) the elements tested have no relation to the observed phenomenon.
Answer:up
Explanation:The partials are lighter
We anticipate a constant Poynting vector of magnitude since the hot resistor will be emitting heat and none of the electric or magnetic fields will change over time.
S = P/A
= I2R/ 2πrL
= 332 kW/m2
Always pointing away from the wire, this Poynting vector.
<h3>What is the Poynting vector?</h3>
Describes the size and direction of the energy flow in electromagnetic waves using a Poynting vector. It bears the name of the 1884 invention of English physicist John Henry Poynting. It stands for the electromagnetic field's directional energy flux or power flow. The Poynting vector is significant in a static electromagnetic field because it determines the direction of energy flow in an electromagnetic field. This vector represents the radiation pressure of an electromagnetic wave and points in its direction of propagation.
To learn more about Poynting vector, visit:
<u>brainly.com/question/17330899</u>
#SPJ4