Answer:
Explanation:
A scientist collects a core sample from 60 km deep in Earth. Which characteristic will she most likely observe in this sample? C. The sample mainly consists of ...
Answer:
24) W = 75 [J]; 25) W = 1794[J]; 26) n = 8.8 (times) or 9 (times)
Explanation:
24) This problem can be solved by means of the following equation.

where:
DU = internal energy difference [J]
Q = Heat transfer [J]
W = work [J]
Since there are no temperature changes the internal energy change is equal to zero
DU = 0
therefore:

The work is equal to the heat transfered, W = 75 [J].
25) The heat transfer can be calculated by means of the following equation.
![Q = m*c_{p}*DT\\where:\\m = mass = 0.4[kg]\\c_{p} = specific heat = 897[J/kg*K]\\DT= 5 [C]](https://tex.z-dn.net/?f=Q%20%3D%20m%2Ac_%7Bp%7D%2ADT%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%200.4%5Bkg%5D%5C%5Cc_%7Bp%7D%20%3D%20specific%20heat%20%3D%20897%5BJ%2Fkg%2AK%5D%5C%5CDT%3D%205%20%5BC%5D)
Q = 0.4*897*5 = 1794[J]
Work is equal to heat transfer, W = 1794[J]
26) Each time the bag falls the potential energy is transformed into heat energy, which is released into the environment. In this way the potential energy is equal to the developed heat.

where:
m = mass = 0.5[kg]
g = gravity = 9.81[m/s^2]
h = 1.5 [m]
![E_{p}=0.5*9.81*1.5\\E_{p}=7.36[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3D0.5%2A9.81%2A1.5%5C%5CE_%7Bp%7D%3D7.36%5BJ%5D)
The heat developed can be calculated by means of the following equation.
![Q=m*c_{p}*DT\\Q=0.5*130*1\\Q=65[J]](https://tex.z-dn.net/?f=Q%3Dm%2Ac_%7Bp%7D%2ADT%5C%5CQ%3D0.5%2A130%2A1%5C%5CQ%3D65%5BJ%5D)
The number of times will be calculated as follows
n = 65/7.36
n = 8.8 (times) or 9 (times)
My guess would be choice D
Answer:
C. strike-slip fault
Explanation:
The scientist must have observed a strike- slip fault.
A fault is an evidence of brittle deformation of the crust in the presence of applied stress on earth materials. Here, the earth material is the rock subjected to tension.
Where a fault occurs, there must have been movement between two blocks of rocks. The direction of movement helps us to delineate the fault type.
- When two blocks moves past each other horizontally, it is a strike-slip fault like rubbing your palms together.
- When a block moves in the direction of the dip, it forms a dip-slip fault which results in a fault-block mountain characterized by graben and horst systems.
Option A, Plateau is a table landform usually a mountain with flat peak.
Option B is a bowl shaped stratigraphic pattern in which the youngest sequence is at the core of the strata or a fold.
So, the most fitting option is C, a strike-slip fault.