Answer:
The minimum speed must the car must be 13.13 m/s.
Explanation:
The radius of the loop is 17.6 m. We need to find the minimum speed must the car traverse the loop so that the rider does not fall out while upside down at the top.
We know that, mg be the weight of car and rider, which is equal to the centripetal force.

So, the minimum speed must the car must be 13.13 m/s.
Answer:
You are asked to design a cylindrical steel rod 50.0 cm long, with a circular cross section, that will conduct 170.0 J/s from a furnace at 350.0 ∘C to a container of boiling water under 1 atmosphere.
Explanation:
Given Values:
L = 50 cm = 0.5 m
H = 170 j/s
To find the diameter of the rod, we have to find the area of the rod using the following formula.
Here Tc = 100.0° C
k = 50.2
H = k × A × ![\frac{[T_{H -}T_{C} ] }{L}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BT_%7BH%20-%7DT_%7BC%7D%20%5D%20%7D%7BL%7D)
Solving for A
A = ![\frac{H * L }{k * [ T_{H}- T_{C} ] }](https://tex.z-dn.net/?f=%5Cfrac%7BH%20%2A%20L%20%7D%7Bk%20%2A%20%5B%20T_%7BH%7D-%20T_%7BC%7D%20%5D%20%7D)
A = ![\frac{170 * 0.5}{50.2 * [ 350 - 100 ]}](https://tex.z-dn.net/?f=%5Cfrac%7B170%20%2A%200.5%7D%7B50.2%20%2A%20%5B%20350%20-%20100%20%5D%7D)
A =
= 6.77 ×
m²
Now Area of cylinder is :
A =
d²
solving for d:
d = 
d = 9.28 cm
Answer:
<em>voltage</em><em> </em><em>,</em><em>current</em><em> </em><em>and</em><em> </em><em>resistance</em><em> </em>