Answer: one molecule of O2.
Explanation: sweet i just took a guess but I believe that if 3 o2 molecules - 2 h2 molecules I think that its just basic maths and it is C because 3-2 = 1 and its o2 remaining, sorry if I’m wrong.
Answer:
the answer is A
I made a chart for AP chem if you want to refer to it.
Characteristic properties can be used to describe and identify the substances, while non-characteristic properties, although can be used to describe the substances, cannot be used to identify them.
Temperature, mass, color, shape and volume are examples of non-characteristic properties.
Density, boiling point, melting point, chemical reactivity are examples of characteristic properties.
List of the properties observed by the scientist:
-----------------------------------------------------------------
Property Type of property
----------------------------------------------------------------
Volume: 5 ml non-characteristic
----------------------------------------------------------------
Color: blue non-characteristic
----------------------------------------------------------------
State: liquid characteristic
------------------------------------------------------------
density: 1.2 g/cm characteristic
------------------------------------------------------------
Reaction: reacts with CO2 characteristic
----------------------------------------------------------
<h3>
Answer:</h3>
1.25 moles (R.T.P.) or 1.34 moles (S.T.P.)
<h3>
Explanation:</h3>
- 1 mole of a gas occupies a volume of 24 liters at room temperature and pressure (R.T.P.)
- On the other hand, 1 mole of a gas will occupy 22.4 Liters at standard temperature and pressure (S.T.P.)
Therefore, at R.T.P.
30.0 Liters will be equivalent to;
= 30.0 L ÷ 24 L
= 1.25 moles
At S.T.P
30.0 Liters will be equivalent to;
= 30.0 L ÷ 22.4 L
= 1.34 moles
Thus, 30.0 L of helium gas are equivalent to 1.25 moles of He at R.T.P. and 1.34 moles at S.T.P.
The answer to this question would most definitely be the last one