Answer:
The coefficient of kinetic friction between the crate and the floor can be calculated using the formula μ = Ff / N, where Ff is the frictional force, N is the normal force, and μ is the coefficient of kinetic friction.
In this case, the normal force is equal to the weight of the crate, which is 24 kg * 9.8 m/s2 = 235.2 N. The frictional force can be calculated using the formula Ff = μ * N, where μ is the coefficient of kinetic friction and N is the normal force.
If we substitute the values for N and Ff into the formula for the coefficient of kinetic friction, we get:μ = 53 N / 235.2 N = 0.225
Therefore, the coefficient of kinetic friction between the crate and the floor is 0.225.
Explanation:
A micrometer is a measuring device or an instrument which is used to measure very minute measurements very accurately and precisely. It is mathematical tool used to provide accurate measurement for any mechanical components.
Now, if the micrometer that I have found is badly bent, it would provide faulty or wrong measurements both in terms of precision and accuracy when compared to a high quality meter stick.
Technically speaking, there are many "levels" of a plant for which this may hold true. I think the one you are referring to is the chloroplast. It takes in the light energy from the sun, water and carbon dioxide, and performs photosynthesis on them to produce sugar and oxygen. A leaf would also fit the description as this is a very general question.
Answer
Explanation:
The question was incomplete as the events are not given in the question. However the answer to your question is given as follows. The correct order of the events from youngest (top) to oldest (bottom) is given as follows.
Moon formation
↑
Earth formation
↑
Nuclear fusion in protosun
↑
BigBang