Answer:
Compared to High angle, relatively less presence of Crystallographic misalignment in grain boundary for small angle is reason behind its less effectiveness in interfering with slip process
Explanation:
Because of relatively much less presence of crystallographic misalignment in grain boundary for small angle, small grain boundaries are not as effective in compare to high angle in interfering with slip process
Less crystallographic misalignment in grain boundary causes not much change in slip direction and therefore interference to slip process is minimal.
Answer:
A λ = 97.23 nm
, B) λ = 486.2 nm
, C) λ = 53326 nm
Explanation:
With that problem let's use the Bohr model equation for the hydrogen atom
= -k e² /2a₀ 1/n²
For a transition between two states we have
-
= -k e² /2a₀ (1/
² - 1 / n₀²)
Now this energy is given by the Planck equation
E = h f
And the speed of light is
c = λ f
Let's replace
h c / λ = - k e² /2a₀ (1 /
² - 1 / no₀²)
1 / λ = - k e² /2a₀ hc (1 /
² -1 / n₀²)
Where the constants are the Rydberg constant
= 1.097 10⁷ m⁻¹
1 / λ =
(1 / n₀² - 1 / nf²)
Now we can substitute the given values
Part A
Initial state n₀ = 1 to the final state
= 4
1 / λ = 1.097 10⁷ (1/1 - 1/4²)
1 / λ = 1.0284 10⁷ m⁻¹
λ = 9.723 10⁻⁸ m
We reduce to nm
λ = 9.723 10⁻⁸ m (10⁹ nm / 1m)
λ = 97.23 nm
Part B
Initial state n₀ = 2 final state
= 4
1 / λ = 1.097 10⁷ (1/2² - 1/4²)
1 / λ = 0.2056 10⁻⁷ m
λ = 486.2 nm
Part C
Initial state n₀ = 3
1 / λ = 1,097 10⁷ (1/3² - 1/4²)
1 / λ = 5.3326 10⁵ m⁻¹
λ = 5.3326 10-5 m
λ = 53326 nm
if the color changes, it is neutral but if it stays the same, it is an acid.
Preserved fossil<span> (like a fossil in amber, ice or tar.</span>
Answer: C) divide: distance ÷ velocity
Explanation:
The velocity
equation is distance
divided by time
:

If we isolate
we will have:

Hence, the correct option is C: distance divided by velocity.