1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ozzi
3 years ago
7

A book is resting on the table. Forces are exerted _____.

Physics
2 answers:
tino4ka555 [31]3 years ago
4 0

for the last one, its 2 m/s2

scoray [572]3 years ago
3 0
Forces are exerted I believe : all of the above
The action force might be Tyler throwing the ball
I don't know the last one
You might be interested in
A man pushes a heavy cart with a force exerted of 250 Newtons to keep it moving at a constant velocity. What is the kinetic fric
miv72 [106K]

It can't be less than 250 N or the cart wouldn't move at all. That means there is only 1 answer. It's between not enough info or 250 N. The answer is 250 N. If it was any more, there would be acceleration.

3 0
3 years ago
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
Please help really easy worth 20
vovangra [49]

Answer:

Stationary

20N

Explanation:

From the graph, we see that the body traveling is on a fixed position. Therefore, it is a stationary body.

The graph given is a position - time curve.

 This curve depict a body changing position with given time.

Since the line of the curve is on a single position, the body is not changing position with the passage of time therefore, it is a stationary object.

B. 20N

From Newton's third law of motion we understand that "action and reaction force are equal but oppositely directed".

 Since the person is exerting a force of 20N on the balance.

So, the reaction force by the balance is 20N upward.

4 0
3 years ago
You are trying to overhear a juicy conversation, but from your distance of 25.0 m , it sounds like only an average whisper of 20
spayn [35]

Answer:So You Decide To Move Closer To Give The Conversation A Sound Level Of 80.0dB Instead. ... You are trying to overhear a juicy conversation, but from your distance of 24.0m , it sounds like only an average whisper of 40.0dB .

Explanation:

7 0
3 years ago
Explain 2 reasons why reactions take place faster at high temperature
Vlada [557]
I have one reason the reaction take place faster because the molecules are going at a faster pace because the temperature is rising 
8 0
3 years ago
Read 2 more answers
Other questions:
  • What we see as "moonlight" is really reflected sunlight.<br><br> True or False?
    9·1 answer
  • What is produced when calcium reacts with fluorine in a synthesis reaction
    10·2 answers
  • A current of 32.1 mA flows in a silver wire of diameter 4.57 mm. Find the electric field strength inside the wire. The conductiv
    7·1 answer
  • The period of a mechanical wave is 5 seconds. what is the frequency of the wave?
    5·2 answers
  • An alternating current is set up in an LRC circuit.
    15·1 answer
  • A 3.9 kg block is pushed along a horizontal floor by a force of magnitude 30 N at a downward angle θ = 40°. The coefficient of k
    10·1 answer
  • Hi, I'm stuck on the problem: Consider a resistor (R=1000 kΩ) and a capacitor (C=1μF) connected in series. This configuration is
    15·1 answer
  • State Newton's second law of motion ​
    13·2 answers
  • Why is your physical and mental health important?
    13·2 answers
  • Habiba and selehadin have measured the voltage across a resistor to be 5.26V and the current flowing through in to be 0.41A they
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!