Answer:
Power of the string wave will be equal to 5.464 watt
Explanation:
We have given mass per unit length is 0.050 kg/m
Tension in the string T = 60 N
Amplitude of the wave A = 5 cm = 0.05 m
Frequency f = 8 Hz
So angular frequency 
Velocity of the string wave is equal to 
Power of wave propagation is equal to 
So power of the wave will be equal to 5.464 watt
Answer:
b, a, c
Explanation:
The middle one has the shortest wavelength, then it's the top one and the last one has the longest wavelength.
Answer: Sirius, the brightest star in the sky, is 2.6 parsecs (8.6 light-years) from Earth, giving it a parallax of 0.379 arcseconds. Another bright star, Regulus, has a parallax of 0.042 arcseconds. Then, the distance in parsecs will be,23.46.
Explanation: To find the answer, we have to know more about the relation between the distance in parsecs and the parallax.
<h3>What is the relation between the distance in parsecs and the parallax?</h3>
- Let's consider a star in the sky, is d parsec distance from the earth, and which has some parallax of P amount.
- Then, the equation connecting parallax and the distance in parsec can be written as,


<h3>How to solve the problem?</h3>

- Thus, we can find the distance in parsecs as,

Thus, we can conclude that, the distance in parsecs will be, 23.46.
Learn more about the relation connecting distance in parsecs and the parallax here: brainly.com/question/28044776
#SPJ4
Answer:
0.615 m
Explanation:
We need to determine the force on the spring first. By Newton's second law of motion, force is the product of the mass and acceleration. The mass is given.
The acceleration is determined using the equation of motion.
Given parameters:
Initial velocity, <em>u</em> = 0.00 m/s
Distance, <em>s</em> = 4.19 m
Time, <em>t</em> = 0.601 s
We use the equation

With <em>u</em> = 0.00 m/s,



The force is

From Hooke's law, the extension, <em>e</em>, of a string is given by

where <em>k</em> is the spring constant.
Hence,
