Remark
When you are asked a question like this, the first thing to do is search out a formula and put some limits on it.
Formula
I = E/R which comes from E = IR. To get to the derived formula, divide both sides by R
E/R = I*R/R
E/R = I
Discussion
This is an inverse relationship. That means that as one goes up the other one will go down.
So in this case you keep E constant and you manipulate R and look at your results for I
Case 1
Let us say that E = 10 volts
Let us also say the R = 10 ohms
I = E/R
I = 10/10
I = 1 ohm
Case Two
Let's raise the Resistance to 100 ohms
E = 10
R = 100
I = 10/100 = 0.1
Conclusion
As the Resistance goes up, the current goes down. Answer: A
Answer:
255 Hz
Explanation:
With 5 beats per second with the 250 Hz fork, we know the unknown fork is either 250 - 5 = 245Hz or 250 + 5 = 255 Hz
With 15 beats per second with the 270 Hz fork, we know the unknown fork is either 270 - 15 = 255Hz or 270 + 15 = 285 Hz (most people would have a hard time discerning 15 beats per second... 5 per second is hard enough)
As 255 is the common frequency, it is the one selected.
In this case, the movement is uniformly delayed (the final
rapidity is less than the initial rapidity), therefore, the value of the
acceleration will be negative.
1. The following equation is used:
a = (Vf-Vo)/ t
a: acceleration (m/s2)
Vf: final rapidity (m/s)
Vo: initial rapidity (m/s)
t: time (s)
2. Substituting the values in the equation:
a = (5 m/s- 27 m/s)/6.87 s
3. The car's acceleration is:
a= -3.20 m/ s<span>^2</span>
To find average speed, we divide the distance of travel (in this case, 400 metres) by the time she took, 32 seconds. Therefore: 12.5 seconds is her average speed.