Answer:
Mass of the aluminium chunk = 278.51 g
Explanation:
For an isolated system as given the energy lost and gains in the system will be zero therefore sum of all transfer of energy will be zero,as the temperature will also remain same
A specific heat formula is given as
Energy Change = Mass of liquid x Specific Heat Capacity x Change in temperature
Q = m×c×ΔT
Heat gain by aluminium + heat lost by copper = 0 (1)
For Aluminium:
Q = 
Q = m x 17.94 joule
For Copper:

Q= 4996.53 Joule
from eq 1
m x 17.94 = 4996.53

Mass of the aluminium chunk = 278.51 g
To solve this problem we will apply the concept related to the magnetic dipole moment that is defined as the product between the current and the object area. In our case we have the radius so we will get the area, which would be



Once the area is obtained, it is possible to calculate the magnetic dipole moment considering the previously given definition:



Therefore the magnetic dipole moment is 
the answer i think is asphalt and plastic
When it comes to wave behavior, there are parameters called wavelength and frequency. These two are related by speed of the radiowave. Radiowaves are electromagnetic waves which travels as fast as light. The wavelength is the distance while frequency is the reciprocal of time. When you multiply them both, you get the electromagnetic wave's speed. The equation is c = wavelength*frequency, where c is the speed of light equal to 3 x 10^8 m/s.
3 x10^8 m/s = wavelength/104.9 x 10^6 Hz (Hertz is 1/s)
wavelength = 2.86 meters
Answer: Δβ (dB) = -13.1dB
Explanation:
The intensity of sound is inversely proportional to the square of the distance between them.
I ∝ 1/r²
I₁/I₂= r₂²/r₁² .....1
When the listener increases his distance from the source by a factor of 4.49.
Then,
r₂/r₁= 4.49
From equation 1
I₁/I₂ = (4.49)²
I₁/I₂ = 20.16
I₂/I₁ = 1/20.16
The change in sound intensity in dB can be given as
Δβ (dB) = 10 log(I₂/l₁) = 10log(1/20.6) = -13.1dB