You have to take note of the individual directions of the plane. Since one is heading east, and the other is heading west, the planes are heading at opposite directions. So, it means that their distance between each other would be equal to 1,200 miles which accounts for the sum of their individual distances. The equation is as follows:
Total Distance = Distance of slower plane + Distance of faster plane
1,200 miles = st + (30+s)(t)
where
s is the speed of the slower plane and t is the time. Since both are not given, the final answer would just be in terms of s.
1,200 = t(s + 30 + s)
t = 1200/(30+2s)
t = 600/(15+s)
C light energy
The solar energy from the sun converts to chemical potential energy
The victim's head is accelerated faster and harder than the
torso when the victom is involved in a typical rear-end collision.
The traffic accident where a vehicle crashes into another
vehicle that is directly in front of it is called a rear-end collision.
One of the most common accident in the United States is the
rear-end collision, and in a lot of cases, rear-end collisions are prompted by
drivers who are inattentive, unfavorable conditions of the road, and poor
following distance.
<span>An enough room in front of your car so you can stop when the
car in front of you stops suddenly is one basic driving rule. The person isn’t
driving safely if he / she is behind you and couldn’t stop.</span>
Yes, if we know the Earth's mass
Explanation:
The momentum of an object is a vector quantity given by the equation

where
m is the mass of the object
v is its velocity
In this case, we are asked if we can find the velocity of the Earth by starting from its momentum. Indeed, we can. In fact, we can rewrite the equation above as

Therefore, if we know the momentum of the Earth (p) and we know its mass as well (m), we can solve the formula to find the Earth's velocity.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly