Answer: Option (D) is the correct answer.
Explanation:
The chemical reaction equation will be as follows.

This means a new substance has been formed and a chemical change has taken place.
A chemical reaction in which heat energy is absorbed by the reactant molecules is known as an endothermic reaction.
For example,
On the other hand, a chemical reaction in which heat energy is released by the reactant molecules is known as an exothermic reaction.
For example,
is an exothermic reaction.
Thus, we can conclude that in the given situation the beaker most likely felt warm because a chemical reaction was producing a new substance.
Answer:
a. NH3 is limiting reactant.
b. 44g of NO
c. 40g of H2O
Explanation:
Based on the reaction:
4NH₃(g) + 5O₂(g) → 4NO(g) + 6H₂O(l)
4 moles of ammonia reacts with 5 moles of oxygen to produces 4 moles of NO and 6 moles of water.
To find limiting reactant we need to find the moles of each reactant and using the balanced equation find which reactant will be ended first. Then, with limiting reactant we can find the moles of each reactant and its mass:
<em>a. </em><em>Moles NH3 -Molar mass. 17.031g/mol-</em>
25g NH3*(1mol/17.031g) = 1.47moles NH3
Moles O2 = 4 moles
For a complete reaction of 4 moles of O2 are required:
4mol O2 * (4mol NH3 / 5mol O2) = 3.2 moles of NH3.
As there are just 1.47 moles, NH3 is limiting reactant
b. Moles NO:
1.47moles NH3 * (4mol NO/4mol NH3) = 1.47mol NO
Mass NO -Molar mass: 30.01g/mol-
1.47mol NO * (30.01g/mol) = 44g of NO
c. Moles H2O:
1.47moles NH3 * (6mol H2O/4mol NH3) = 2.205mol H2O
Mass H2O -Molar mass: 18.01g/mol-
2.205mol H2O * (18.01g/mol) = 40g of H2O
For a candle to burn, it requires a spark, which provides the activation energy for the oxidation reaction of the hydrocarbon making the candle.
It also requires oxygen to facilitate the oxidation of the hydrocarbon.
Therefore the two main requirements of combustion of a candle are oxygen and a spark (or an initial flame)
Answer:
The particles in a liquid are close together (touching) but they are able to move/slide/flow past each other.
Explanation: