168.96 g of carbon dioxide (CO₂)
Explanation:
The chemical reaction representing the combustion of acetylene:
2 C₂H₂ (g) + 5 O₂ (g)→ 4 CO₂ (g) + 2 H₂O (g)
number of moles = mass / molecular weight
number of moles of acetylene (C₂H₂) = 50 / 26 = 1.92 moles
Taking in account the stoichiometry of the chemical reaction, we devise the following reasoning:
if 2 moles of acetylene (C₂H₂) produces 4 moles of carbon dioxide (CO₂)
then 1.92 moles of acetylene (C₂H₂) produces X moles of carbon dioxide (CO₂)
X = (1.92 × 4) / 2 = 3.84 moles of carbon dioxide (CO₂)
mass = number of moles × molecular weight
mass of carbon dioxide (CO₂) = 3.84 × 44 = 168.96 g
Learn more about:
combustion of hydrocarbons
brainly.com/question/4919676
brainly.com/question/1406903
#learnwithBrainly
Don't really know if this is what your asking but P1/T1= P2/T2 should show how the pressure varies with temperature (V is left out because it's constant since the gas is trapped in an aerosol can). As the temperature rises the pressure rises and if it gets too high then the can explodes, which is why it should be stored in a cool place. There's also PV=nRT might be kind of hard to find moles (n) though.
The correct option is FLUORINE AND COPPER.
An ionic compound is usually formed by the combination of a metal and a non metal, the metal usually act as an electron donor while the non metal act as an electron acceptor. Thus, in ionic compounds, there is total transfer of electrons from the metal to the non metal. In the question given here, copper is the metal while the fluorine is the non metal.<span />