1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goryan [66]
3 years ago
11

ANSWER IN LESS THAN A MINUTE!! EASYY!​

Physics
1 answer:
jek_recluse [69]3 years ago
4 0

Answer:

20 mile/hr 1st choice is correct

You might be interested in
During the middle of a family picnic, Barry Allen received a message that his friends Bruce and Hal
weeeeeb [17]

The kinematics of the uniform motion and the addition of vectors allow finding the results are:

  • The  Barry's initial trajectory is 94.30 10³ m with n angles of θ = 138.8º
  • The return trajectory and speed are v = 785.9 m / s, with an angle of 41.2º to the South of the East

Vectors are quantities that have modulus and direction, so they must be added using vector algebra.

A simple method to perform this addition in the algebraic method which has several parts:

  • Vectors are decomposed into a coordinate system
  • The components are added
  • The resulting vector is constructed

 Indicate that Barry's velocity is constant, let's find using the uniform motion thatthe distance traveled in ad case

              v = \frac{\Delta d}{t}

              Δd = v t

Where  v is the average velocity, Δd the displacement and t the time

We look for the first distance traveled at speed v₁ = 600 m / s for a time

          t₁ = 2 min = 120 s

          Δd₁ = v₁ t₁

          Δd₁ = 600 120

          Δd₁ = 72 10³ m

Now we look for the second distance traveled for the velocity v₂ = 400 m/s    

  time t₂ = 1 min = 60 s

          Δd₂ = v₂ t₂

          Δd₂ = 400 60

          Δd₂ = 24 103 m

   

In the attached we can see a diagram of the different Barry trajectories and the coordinate system for the decomposition,

We must be careful all the angles must be measured counterclockwise from the positive side of the axis ax (East)

Let's use trigonometry for each distance

Route 1

          cos (180 -35) = \frac{x_1}{\Delta d_1}

          sin 145 = \frac{y_1}{\Delta d1}

          x₁ = Δd₁ cos 125

          y₁ = Δd₁ sin 125

          x₁ = 72 103 are 145 = -58.98 103 m

          y₁ = 72 103 sin 155 = 41.30 10³ m

Route 2

          cos (90+ 30) = \frac{x_2}{\Delta d_2}

          sin (120) = \frac{y_2}{\Delta d_2}

          x₂ = Δd₂ cos 120

          y₂ = Δd₂ sin 120

          x₂ = 24 103 cos 120 = -12 10³ m

           y₂ = 24 103 sin 120 = 20,78 10³ m

             

The component of the resultant vector are

              Rₓ = x₁ + x₂

              R_y = y₁ + y₂

              Rx = - (58.98 + 12) 10³ = -70.98 10³ m

              Ry = (41.30 + 20.78) 10³ m = 62.08 10³ m

We construct the resulting vector

Let's use the Pythagoras' Theorem for the module

             R = \sqrt{R_x^2 +R_y^2}

             R = \sqrt{70.98^2 + 62.08^2}   10³

             R = 94.30 10³ m

We use trigonometry for the angle

             tan θ ’= \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{62.08}{70.98}

             θ ’= 41.2º

Since the offset in the x axis is negative and the displacement in the y axis is positive, this vector is in the second quadrant, to be written with respect to the positive side of the x axis in a counterclockwise direction

            θ = 180 - θ'

            θ = 180 -41.2

            θ = 138.8º

Finally, let's calculate the speed for the way back, since the total of the trajectory must be 5 min and on the outward trip I spend 3 min, for the return there is a time of t₃ = 2 min = 120 s.

The average speed of the trip should be

             v = \frac{\Delta R}{t_3}  

             v = \frac{94.30}{120}  \ 10^3

              v = 785.9 m / s

in the opposite direction, that is, the angle must be

               41.2º to the South of the East

In conclusion, using the kinematics of the uniform motion and the addition of vectors, results are:

  • To find the initial Barry trajectory is 94.30 10³ m with n angles of  138.8º
  • The return trajectory and speed is v = 785.9 m / s, with an angle of 41.2º to the South of the East

Learn more here:  brainly.com/question/15074838

4 0
3 years ago
While tuning a string to the note C at 523 Hz, a piano tuner hears 2.00 beats/s between a reference oscillator and the string.
lara31 [8.8K]

Answer:

a)the possible frequencies are 521hz ,522hz, 523, 524hz,525hz

b) 526hz

c)0.989 or a 1.14% decrease in tension

Explanation:

a) While tuning a string at 523 Hz,piano tuner hears 2.00 beats/s between a reference oscillator and the string.

The possible frequencies of the string can be calculated by

fl=f' - B

where

fl= lower limit of the possible frequency

f'= frequency of the string

B= beat heard by the tuner

fl= 523hz + Or - (2beats/secs * 1hz/1beat per sc)

fl= 521hz or 525hz

So the possible frequencies are 521hz ,522hz, 523, 524hz,525hz

b)fl=f' - B

523hz= f' - 3

f'= 523 + 3= 526hz

c) The tension is directly proportional to the square of the frequencies

T1/T2 =f1^2/f2^2

523^2 / 526^2 = 0.989 or a 1.14% decrease in tensio

6 0
3 years ago
A uniform electric field has a magnitude 1.80 kV/m and points in the +x direction. (a) What is the electric potential difference
EastWind [94]

Answer:

a)ΔV = 6.48 KV

b)ΔU =18.79 mJ

Explanation:

Given that

E= 1.8 KV/m

a)

We know that

Electric potential difference  ΔV given as

ΔV = E .d

Here

E= 1.8 KV/m

d= 3.6 m

ΔV = E .d

ΔV = 1.8 x 3.6 KV

ΔV = 6.48 KV

b)

Given that

q=+2.90 µC

Change in electric potential energy ΔU given as

ΔU = q .ΔV

\Delta U=2.9\times 10^{-6}\times 6.48\times 10^3\ J

ΔU =18.79 mJ

8 0
3 years ago
PLEASEE HELP !! <br><br> explain how a leaf is organic matter
avanturin [10]
A leaf is organic matter because organic matter refers to anything from something living. because a leaf is living or was at one point it is organic matter
6 0
3 years ago
Based on what you have learned from this unit, construct a tri-fold brochure instructing a new freshman as to the best way to le
Rzqust [24]
<span>A tri-fold brochure has two parallel folds, splitting the brochure into three sections. Even when printed on low-weight paper, tri-folds can stand up easily, which makes them a great choice for displaying at conventions. You can fold both folds inwards so that the left and right sections of the brochure sit on top of one another, or you can have one fold inwards and the other outwards, to create an accordion effect, which looks very attractive.</span>
3 0
3 years ago
Other questions:
  • If the battery of your phone can provide 2 mA of current to your phone and holds a charge of 130 C, how long will it take a full
    13·1 answer
  • Dont skip need help ASAP and pls hurry will give 10 pts + brainliest
    11·2 answers
  • Help please this is important!
    6·1 answer
  • Light from the sun travels through space to Earth's atmosphere. Which will light waves do when they move from empty space into m
    6·1 answer
  • The drawing shows a golf ball passing through a windmill at a miniature golf course. The windmill has 12 blades and rotates at a
    10·1 answer
  • A permanent magnet is pushed into a wire, left there for a while, and then pulled out. During which time does a current run thou
    10·1 answer
  • The force F⃗ pulling the string is constant; therefore the magnitude of the angular acceleration α of the wheel is constant for
    6·1 answer
  • A 65 kg woman is inside an elevator. (A) Calculate her apparent weight (normal force) in Newtons if the elevator moves at consta
    14·1 answer
  • A woman with a mass of 60 kg climbs a set of stairs that are 3m high How much gravitational potential energy does she gain a res
    14·2 answers
  • Refraction occurs when a wave enters a new medium at an angle because
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!