Answer:
2.2mL
Explanation:
First, let us analyse what was given from the question:
C1 = 2.09M
V1 =?
C2 = 0.046M
V2 =100mL
Using dilution formula (C1V1 = C2V2), we can calculate the volume of the original solution as follows:
C1V1 = C2V2
2.09 x V1 = 0.046 x 100
Divide both side by the coefficient of V1 ie 2.09, we have:
V1 = (0.046 x 100) / 2.09
V1 = 2.2mL
Answer:
yes it should react yoyoyoyoyo
Answer:
C2H3Br + O2 → CO2 + H2O + HBr
Explanation:
The term balancing of chemical reaction equation has a unique meaning in chemistry. What it actually means is to ensure that the number of atoms of each element on the left hand side of reaction equation becomes equal to the number of atoms of the same element on the right hand side of the reaction equation.
When we look at the equation; C2H3Br + O2 → CO2 + H2O + HBr, the number of atoms of each element on the left and right hand sides of the given equation are not the same hence the equation is unbalanced.
If we look at the equation; 2C2H3Br + 5O2 → 4CO2 + 2H2O + 2HBr, the number of atoms of each element on both sides of the reaction equation are now equal, thus the later equation is the balanced version of the former.
Answer:
<h3>I don't know what is the answer of your question sorry never mind..</h3>
Explanation:
<h3>And please marks me as brainliest... </h3>
The reaction, 2 C4H10 (g) + 13 O2 (g) = 8 CO2 (g) + 5 H2O (g), is the combustion of butane. A combustion reaction involves the reaction of a hydrocarbon with oxygen producing carbon dioxide and water. This reaction is exothermic which means it releases energy in the form of heat. Therefore, as the reaction proceeds,a heat energy is being given off by the reaction. This happens because the total kinetic energy of the reactants is greater than the total kinetic energy of the products. So, the excess energy should be given off somewhere which in this case is released as heat.