The way that scientists ensure that data is reliable Clear Explanation
Answer:
How Heavy? More than 2,300,000 limestone and granite blocks were pushed, pulled, and dragged into place on the Great Pyramid. The average weight of a block is about 2.3 metric tons (2.5 tons).
Explanation:
The statements that correctly compare the gravitational force with the electrical force are the following:
-The gravitational force can be attractive.
-The electrical force can be repulsive.
-The electrical force can be attractive.
-Any two objects experience a gravitational force between them.
Answer:
Explanation:
Force can be found by multiplying the mass by the acceleration.
The mass of the roller coaster is 2000 kilograms and the acceleration is 2 meters per second squared.
Substitute the values into the formula.
Multiply.
- 1 kg*m/s² is equal to 1 N
- Therefore our answer of 4000 kg*m/s² is equal to 4000 Newtons
The net force acting on the roller coaster is <u>4000 Newtons.</u>
The solution would be like
this for this specific problem:
<span>
The force on m is:</span>
<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] ->
1
The force on 2m is:</span>
<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2]
-> 2
From (1), you’ll get M = 2mx^2 / L^2 and from
(2) you get M = m(L - x)^2 / L^2
Since the Ms are the same, then
2mx^2 / L^2 = m(L - x)^2 / L^2
2x^2 = (L - x)^2
xsqrt2 = L - x
x(1 + sqrt2) = L
x = L / (sqrt2 + 1) From here, we rationalize.
x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1)
x = L(sqrt2 - 1) / (2 - 1)
x = L(sqrt2 - 1) </span>
= 0.414L
<span>Therefore, the third particle should be located the 0.414L x
axis so that the magnitude of the gravitational force on both particle 1 and
particle 2 doubles.</span>