Answer:
2513.6 W
Explanation:
Acoustic power = sound intensity × area of hemisphere
Sound intensity = 1 W/m^2
Area of hemisphere = 2πr^2 = 2×3.142×20^2 = 2513.6 m^2
Acoustic power = 1 W/m^2 × 2513.6 m^2 = 2513.6 W
Momentum will be conserved in one dimension in the explosion.
<span>
Given that the fragment a acquires three
times the kinetic energy of the fragment b.
<span>
P</span><span><span>initial </span><span>= p</span></span>final ⇒ 0 =mₐv⁰ₐ+mьv⁰ь= 0 ⇒ v⁰ь = -mₐv⁰ₐ/mь
KE= 3KEь
⇒1/2 mₐv⁰ₐ² = 3 (1/2mьv⁰ь²)
</span><span>
⇒1/2 mₐv⁰ₐ² = 3/2 mь(-mₐv⁰ₐ/mь)²
⇒1/2 mₐv⁰ₐ² = 3/2 mь(mₐ²v⁰ₐ²/mь²)
</span>
⇒1/2 x 2/3 = mₐ/mь= 1/3
<span>
<span>
Thus the ratio
of the masses of the fragments is 1:3.
</span></span>
Answer:
gamma ray, or gamma radiation (symbol γ or {\displaystyle \gamma } \gamma ), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves and so imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.
Then, the reaction does not have any kinetic energy
Mass is that quantity that is solely dependent upon the inertia of an object. The more inertia that an object has, the more mass that it ha