I don't know why the answer is D , because I can't see the list of choices.
The only way to get 8.0 Amps is by making a serious mistake.
The current in the second picture is 4.0 Amps.
If the resistors are identical, then the effective resistance of
two resistors in parallel is 1/2 the resistance of each one.
The resistance in the second picture is 1/2 the resistance
in the first picture.
Current = (voltage) / (resistance)
Cutting the resistance in half causes the current to double.
If the current was 2.0 Amps in the first picture, it's 4.0 Amps
in the second picture.
The range of force exerted at the end of the rope is 285.7 N to 1,000 N.
<h3>Net horizontal force of the cylinder</h3>
The net horizontal force of the cylinder when it is at equilibrium position is determined by applying Newton's second law of motion.
∑F = 0
F - μFn = 0
F - 0.2(5,000) = 0
F - 1,000 = 0
F = 1,000 N
The strength of the applied force increases as the number of turns of the rope increases.
minimum force = total force/number of turns of rope
minimum force = 1,000/3.5
minimum force = 285.7 N
Thus, the range of force exerted at the end of the rope is 285.7 N to 1,000 N.
Learn more about Newton's second law of motion here: brainly.com/question/3999427
Answer: analog-to-digital
Explanation: Analog-to-digital converters as the name implies simply refers to components which are used to convert continuous analog signals into a discrete analog outputs so they it can be read and processed by a microprocessor. The microprocessors are unable to depict and read analog signals which could be gathered from sound, light or water wave sources. This wave sources are then sampled, processed and sorted into levels by the analog-to-digital converter before being sent to the microprocessor so that the waves can be read.
The mirror formula for curved mirrors is:

where
f is the focal length of the mirror

is the distance of the object from the mirror

is the distance of the image from the mirror
The sign convention that should be used in order to find the correct values is the following:
-

: positive if the mirror is concave, negative if the mirror is convex
-

: positive if the image is real (located on the same side of the object), negative if it is virtual (located on the opposite side of the mirror)