Answer:
a) 50μC
b) 37.45 m/s
Explanation:
a) If the spheres are connected the charge in both spheres tends to be equal. This because is the situation of minimum energy.
Thus, you have:

Hence, each sphere has a charge of 50μC.
b) You use the fact that the total work done by the electric force is equal to the change in the kinetic energy of the sphere. Then, you use the following equations:
![\Delta W=\Delta K\\\\\int_{0.4}^\infty Fdr=\frac{1}{2}m[v^2-v_o^2]\\\\F=k\frac{Q^2}{r^2}\\\\v_o=0m/s\\\\m=0.08kg\\\\kQ^2\int_{0.4}^{\infty} \frac{dr}{r^2}=kQ^2[-\frac{1}{r}]_{0.4}^{\infty}=\frac{kQ^2}{0.4m}=\frac{(8.98*10^9Nm^2/C^2)(50*10^{-6}C)^2}{0.4m}\\\\kQ^2\int_{0.4}^{\infty} \frac{dr}{r^2}=56.125J](https://tex.z-dn.net/?f=%5CDelta%20W%3D%5CDelta%20K%5C%5C%5C%5C%5Cint_%7B0.4%7D%5E%5Cinfty%20Fdr%3D%5Cfrac%7B1%7D%7B2%7Dm%5Bv%5E2-v_o%5E2%5D%5C%5C%5C%5CF%3Dk%5Cfrac%7BQ%5E2%7D%7Br%5E2%7D%5C%5C%5C%5Cv_o%3D0m%2Fs%5C%5C%5C%5Cm%3D0.08kg%5C%5C%5C%5CkQ%5E2%5Cint_%7B0.4%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdr%7D%7Br%5E2%7D%3DkQ%5E2%5B-%5Cfrac%7B1%7D%7Br%7D%5D_%7B0.4%7D%5E%7B%5Cinfty%7D%3D%5Cfrac%7BkQ%5E2%7D%7B0.4m%7D%3D%5Cfrac%7B%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%2850%2A10%5E%7B-6%7DC%29%5E2%7D%7B0.4m%7D%5C%5C%5C%5CkQ%5E2%5Cint_%7B0.4%7D%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdr%7D%7Br%5E2%7D%3D56.125J)
where you have used the Coulomb constant = 8.98*10^9 Nm^2/C^2
Next, you equal the total work to the change in K:

hence, the speed of the spheres is 37.45 m/s
Answer:
The length of the object would shrink to zero which is not possible.
Explanation:
A rocket or any body cannot reach the speed of light because according to theory of relativity the and the Lorentz factor the length of the object would shrink to zero and the time dilation for that body would be infinite.
The Lorentz factor is given as:

where:
v = speed of the moving object
c = speed of light
Answer:
v = 8.4 m/s
Explanation:
The question ays, "A longitudinal wave has a frequency of 200 Hz and a wavelength of 4.2m. What is the speed of the wave?".
Frequency of a wave, f = 200 Hz
Wavelength = 4.2 cm = 0.042 m
We need to find the speed of the wave. The formula for the speed of a wave is given by :

So, the speed of the wave is equal to 8.4 m/s.
Answer:
the weight of the ball is w = 51.94 N ( mass = 5.3 kg)
Explanation:
Following Newton's second law:
net force = mass * acceleration = weight/gravity * acceleration
then denoting 1 and 2 as the first and second lift
F₁ - w= w/g *a₁
F₂ -w = w/g *a₂ = w/g * 2.07a
dividing both equations
(F₂- w)/(F₁ -w)= 2.07
(F₂- w) = 2.07 * (F₁ -w)
1.07*w = 2.07*F₁ - F₂
w = (2.07*F₁ - F₂ )/ 1.07
replacing values
w = (2.07*61.1 N - 70.9 N )/ 1.07 = 51.94 N
then the weight of the ball is w = 51.94 N ( mass = 5.3 kg)
Complete Question
A 100-W (watt) light bulb has resistance R=143Ω (ohms) when attached to household current, where voltage varies as V=V0sin(2πft), where V0=110 V, f=60 Hz. The power supplied to the bulb is P=V2R J/s (joules per second) and the total energy expended over a time period [0,T] (in seconds) is 
Compute U if the bulb remains on for 5h
Answer:
The value is 
Explanation:
From the question we are told that
The power rating of the bulb is
The resistance is 
The voltage is ![V = V_o sin [2 \pi ft]](https://tex.z-dn.net/?f=V%20%20%3D%20%20V_o%20%20sin%20%5B2%20%5Cpi%20ft%5D)
The energy expanded is 
The voltage 
The frequency is 
The time considered is 
Generally power is mathematically represented as

=> ![P = \frac{( 110 sin [2 \pi * 60t])^2}{ 144}](https://tex.z-dn.net/?f=P%20%3D%20%20%5Cfrac%7B%28%20110%20%20sin%20%5B2%20%5Cpi%20%2A%2060t%5D%29%5E2%7D%7B%20144%7D)
=> ![P = \frac{ 110^2 [ sin [120 \pi t])^2}{ 144}](https://tex.z-dn.net/?f=P%20%3D%20%20%5Cfrac%7B%20110%5E2%20%5B%20sin%20%5B120%20%5Cpi%20t%5D%29%5E2%7D%7B%20144%7D)
So
![U = \int\limits^T_0 { \frac{ 110^2* [sin [120 \pi t])^2}{ 144}} \, dt](https://tex.z-dn.net/?f=U%20%20%3D%20%20%5Cint%5Climits%5ET_0%20%7B%20%5Cfrac%7B%20110%5E2%2A%20%20%5Bsin%20%5B120%20%5Cpi%20t%5D%29%5E2%7D%7B%20144%7D%7D%20%5C%2C%20dt)
=> ![U = \frac{110^2}{144} \int\limits^T_0 { ( sin^2 [120 \pi t]} \, dt](https://tex.z-dn.net/?f=U%20%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5Cint%5Climits%5ET_0%20%7B%20%28%20%20%20sin%5E2%20%5B120%20%5Cpi%20t%5D%7D%20%5C%2C%20dt)
=> 
=> 
=> ![U = \frac{110^2}{144} [\frac{t}{2} - [\frac{1}{2} * \frac{sin(240 \pi t)}{240 \pi} ] ]\left | T} \atop {0}} \right.](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5B%5Cfrac%7Bt%7D%7B2%7D%20%20-%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Cfrac%7Bsin%28240%20%5Cpi%20t%29%7D%7B240%20%5Cpi%7D%20%5D%20%5D%5Cleft%20%20%7C%20T%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
=> ![U = \frac{110^2}{144} [\frac{t}{2} - [\frac{1}{2} * \frac{sin(240 \pi t)}{240 \pi} ] ]\left | 18000} \atop {0}} \right.](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5B%5Cfrac%7Bt%7D%7B2%7D%20%20-%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Cfrac%7Bsin%28240%20%5Cpi%20t%29%7D%7B240%20%5Cpi%7D%20%5D%20%5D%5Cleft%20%20%7C%2018000%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![U = \frac{110^2}{144} [\frac{18000}{2} - [\frac{1}{2} * \frac{sin(240 \pi (18000))}{240 \pi} ] ]](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5B%5Cfrac%7B18000%7D%7B2%7D%20%20-%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Cfrac%7Bsin%28240%20%5Cpi%20%2818000%29%29%7D%7B240%20%5Cpi%7D%20%5D%20%5D)
=> 