0.0179 ohms for copper.
0.0184 ohms for annealed copper
Ď = R (A/l) where
Ď = electrical resistivity
R = electrical resistance of a uniform specimen
A = cross sectional area
l = length
Solve for R by multiplying both sides by l/A
R = Ď(l/A)
The cross section of the wire is pi * 1^2 mm = 3.14159 square mm = 3.14159e-6 square meters.
The length is 3 meters. So l/A = 3/3.14159e-6 = 9.5493e5
Ď for copper is 1.68e-8 so 1.68e-8 * 9.5493e5 = 1.60e-2 ohms at 20 C
But copper has a temperature coefficient (α) of 0.00386 per degree C.
So the resistance value needs to be adjusted based upon how far from 20 C the temperature is.
50 - 20 = 30 C
So 0.00386 * 30 = 0.1158 meaning that the actual resistance at 50 C will be 11.58% higher.
So 1.1158 * 0.016 = 0.0179 ohms.
If you're using annealed copper, the values for Ď and the temperature coefficient change.
Ď = 1.72e-8
α = 0.00393
Doing the math, you get
1.72e-8 * 9.5493e5 * (1 + 30 * 0.00393) = 0.0184 ohms
Answer:
hence the y - component of the velocity is 50m/s
The correct answer is <span>A. By multiplying the change in mass by the square of the speed of light since the formula is expressed by </span>E = mc².
Answer:
An object at rest does not move and an object in motion does not change its velocity, unless an external force acts upon it
Explanation:
This statement is also known as Newton's first law, or law of inertia.
It states that the state of motion of an object can be changed only if there is an external force (different from zero) acting on it: therefore
- If an object is at rest, it will remain at rest if there is no force acting on it
- If an object is moving, it will continue moving at constant velocity if there is no force acting on it
This phenomenon can be also understood by looking at Newton's second law:
F = ma
where
F is the net force on an object
m is the mass
a is the acceleration
If the net force is zero, F = 0, the acceleration of the object is also zero, a = 0: therefore, the velocity of the object does not change, and it will continue moving at the same velocity (which can be zero, if the object was at rest).