We know that to relate solutions of with the factors of molarity and volume, we can use the equation:

**
NOTE: The volume as indicated in this question is defined in L, not mL, so that conversion must be made. However it is 1000 mL = 1 L.
So now we can assign values to these variables. Let us say that the 18 M

is the left side of the equation. Then we have:

We can then solve for

:

and

or

We now know that the total amount of volume of the 4.35 M solution will be
210 mL. This is assuming that the entirety of the 50 mL of 18 M is used and the rest (160 mL) of water is then added.
Answer:bro u already have an answer why are you asking?
Explanation:
For the answer to the question above, I can't help you directly because I don't have a calculator right now. But I'll show you how to solve this.
<span>use the freezing point depression formula for this one: delta T = i * m * K where K is a constant, m is the molality (mol solute/kg solvent), and i is the van'hoff factor the van hoff factor is the number of ions that your salt dissociates into. Since it's an ALKALI flouride salt, how many ions? k is just a constant, you get it from a table in your textbook somewhere So you have everything to solve for the molality of the solution, once you did that, multiplying it by the mass of water to find the mols of the salt. Take the mass of the salt and divide by this mols to figure out the molar mass, and then compare it with the periodic table to identify the salt.
</span>
<u>Mole solute</u> x mass of Water = Mol solute<u>
</u>kg Solvent
then
Mass of solute x <u> 1 </u> = molar mass
mole of solute
Answer:
the adjective is the word "famous" because an adjective describes a noun. and ben franklin is the noun here. (or subject.)
Based on the energy usage shown by the graph, the best option for the chemical change represented is the combustion of iron.
<h3>What chemical change is shown by the graph?</h3>
The combustion of iron in oxygen leads to the formation of Iron (III) oxide in solid form.
For the combustion of iron to happen, a lot of heat has to be applied to the iron which is why the potential energy of reactants is high. As the reaction progresses, the energy needed reduces as iron (III) oxide is formed.
Find out more on Iron (III) oxide at brainly.com/question/11885810.