Answer:
A breakdown of the breaking buffer was first listed with its respective component and their corresponding value; then a table was made for the stock concentrations in which the volume that is being added was determined by using the formula
. It was the addition of these volumes altogether that make up the 0.25 L (i.e 250 mL) with water
Explanation:
Given data includes:
Tris= 10mM
pH = 8.0
NaCl = 150 mM
Imidazole = 300 mM
In order to make 0.25 L solution buffer ; i.e (250 mL); we have the following component.
Stock Concentration Volume to be Final Concentration
added
1 M Tris 2.5 mL 10 mM
5 M NaCl 7.5 mL 150 mM
1 M Imidazole 75 mL 300 mM
. is the formula that is used to determine the corresponding volume that is added for each stock concentration
The stock concentration of Tris ( 1 M ) is as follows:
.

The stock concentration of NaCl (5 M ) is as follows:
.

The stock concentration of Imidazole (1 M ) is as follows:
.

Hence, it is the addition of all the volumes altogether that make up 0.25L (i.e 250 mL) with water.
Explanation:
Matter also exhibits physical properties. Physical properties are used to observe and describe matter. Physical properties can be observed or measured without changing the composition of matter. These are properties such as mass, weight, volume, and density.
Answer: Water is a permanent electric dipole, having permanent charge separation.
Explanation:
Hydrogen bonding is an intermolecular force having partial ionic-covalent character.
In
, O is a highly electronegative atom attached to a H atom through a covalent bond. The oxygen atoms being more electronegative gets partial negative charge and H atom gets partial positive charge. Thus water is permanent electric dipole.
Hydrogen bonding takes place between a hydrogen atom (attached with an electronegative atom O) and an electronegative atom (O).
Given that 1 micrometer or micron (um) is equivalent by definition to 1 x 10^-6 m, this means that 1 square micron (um^2) is equivalent to (1 x 10^-6)^2 m^2, or 1 x 10^-12 m^2.
(2.60 um^2) * (1 x 10^-12 m^2 / 1 um^2) = 2.60 x 10^-12 m^2
Therefore the layer of graphene covers an area of 2.60 x 10^-12 m^2.
<span />