Answer:
There will be produced 1.71 moles of B which contain 1.03×10²⁴ molecules
Explanation:
The example reaction is:
2A → 3B
2 moles of A produce 3 moles of B
If we have the mass of A, we convert it to moles and then, we make the rule of three: 29.2 g / 25.6g/mol = 1.14 moles
Therefore 2 moles of A produce 3 moles of B
1.14 moles of A will produce (1.14 . 3) / 2 = 1.71 moles of B are produced
Now we can determine, the number of molecules
1 mol has NA molecules (6.02×10²³)
1.71 moles have (1.71 . NA) = 1.03×10²⁴ molecules
Answer:
Electrical force can pull and push
Explanation:
Answer:
2

Explanation:
Half-life


Concentration
![{[A]_0}_A=1.2\ \text{M}](https://tex.z-dn.net/?f=%7B%5BA%5D_0%7D_A%3D1.2%5C%20%5Ctext%7BM%7D)
![{[A]_0}_B=0.6\ \text{M}](https://tex.z-dn.net/?f=%7B%5BA%5D_0%7D_B%3D0.6%5C%20%5Ctext%7BM%7D)
We have the relation
![t_{1/2}\propto \dfrac{1}{[A]_0^{n-1}}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%5Cpropto%20%5Cdfrac%7B1%7D%7B%5BA%5D_0%5E%7Bn-1%7D%7D)
So
![\dfrac{{t_{1/2}}_A}{{t_{1/2}}_B}=\left(\dfrac{{[A]_0}_B}{{[A]_0}_A}\right)^{n-1}\\\Rightarrow \dfrac{2}{4}=\left(\dfrac{0.6}{1.2}\right)^{n-1}\\\Rightarrow \dfrac{1}{2}=\left(\dfrac{1}{2}\right)^{n-1}](https://tex.z-dn.net/?f=%5Cdfrac%7B%7Bt_%7B1%2F2%7D%7D_A%7D%7B%7Bt_%7B1%2F2%7D%7D_B%7D%3D%5Cleft%28%5Cdfrac%7B%7B%5BA%5D_0%7D_B%7D%7B%7B%5BA%5D_0%7D_A%7D%5Cright%29%5E%7Bn-1%7D%5C%5C%5CRightarrow%20%5Cdfrac%7B2%7D%7B4%7D%3D%5Cleft%28%5Cdfrac%7B0.6%7D%7B1.2%7D%5Cright%29%5E%7Bn-1%7D%5C%5C%5CRightarrow%20%5Cdfrac%7B1%7D%7B2%7D%3D%5Cleft%28%5Cdfrac%7B1%7D%7B2%7D%5Cright%29%5E%7Bn-1%7D)
Comparing the exponents we get

The order of the reaction is 2.
![t_{1/2}=\dfrac{1}{k[A]_0^{n-1}}\\\Rightarrow k=\dfrac{1}{t_{1/2}[A]_0^{n-1}}\\\Rightarrow k=\dfrac{1}{2\times 1.2^{2-1}}\\\Rightarrow k=0.4167\ \text{M}^{-1}\text{min}^{-1}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cdfrac%7B1%7D%7Bk%5BA%5D_0%5E%7Bn-1%7D%7D%5C%5C%5CRightarrow%20k%3D%5Cdfrac%7B1%7D%7Bt_%7B1%2F2%7D%5BA%5D_0%5E%7Bn-1%7D%7D%5C%5C%5CRightarrow%20k%3D%5Cdfrac%7B1%7D%7B2%5Ctimes%201.2%5E%7B2-1%7D%7D%5C%5C%5CRightarrow%20k%3D0.4167%5C%20%5Ctext%7BM%7D%5E%7B-1%7D%5Ctext%7Bmin%7D%5E%7B-1%7D)
The rate constant is 
The initial mass of sodium hydroxide is 3.3 g (answer C)
<u><em>calculation</em></u>
Step 1 : find the moles of iron (ii) hydroxide ( Fe(OH)₂
moles = mass÷ molar mass
from periodic table the molar mass of Fe(OH)₂ = 56 + [16 +1]2 = 90 g/mol
moles is therefore = 3.70 g÷ 90 g/mol = 0.041 moles
Step 2: use the mole ratio to calculate the moles of sodium hydroxide (NaOH)
from given equation NaOH : Fe(OH)₂ is 2 :1
therefore the moles of NaOH = 0.041 x 2 = 0.082 moles
Step 3: find mass of NaOH
mass = moles x molar mass
from the periodic table the molar mass of NaOH = 23 +16 +1 = 40 g/mol
mass = 0.082 moles x 40 g/mol = 3.3 g ( answer C)
Answer:
squeezing syringes contain gas