Molecular Motion<span> is the speed at which molecules or atoms move dependent on temperature and state of matter.
Explanation:
</span>All molecules are<span> in constant motion. Molecules of a liquid have </span>a lot of<span> freedom of movement than those </span>in an exceedingly<span> solid. Molecules </span>in an exceedingly<span> gas have </span>the best<span> degree of motion.</span>
<span>
Heat, temperature </span>and also the<span> motion of molecules </span>area unit<span> all </span>connected<span>. Temperature </span>could be a life<span> of </span>the common K.E.<span> of the molecules </span>in an exceedingly<span> material. Heat </span>is that the<span> energy transferred between materials that have </span>completely different temperatures<span>. Increasing the temperature </span>will increase<span> the </span>travel<span> motion of molecules Energy </span>is expounded<span> to temperature by the relationship.</span>
Answer: Balanced chemical equation will be :

Explanation:
(Unbalanced)
A balanced chemical reaction follows the Law of Conservation of Mass. which states in a chemical reaction mass can neither be created nor be destroyed. In other words total mass of the products is equal to the total mass of reactants.
Balanced chemical equation will be :

Answer: 2.4 ml
Solution :
Molar mass of
= 17 g/mole
Given,: 28% w/w of
solution means 28 g of ammonia in 100 g of solution.
Mass of solution = 100 g
Now we have to calculate the volume of solution.
Molarity : It is defined as the number of moles of solute present in one liter of solution.

where,
n = moles of solute 
= volume of solution in liter = 0.11 L
Now put all the given values in the formula of molarity, we get

Using molarity equation:



Answer:
Silver ions.
Explanation:
The most extensively studied nanomaterials for water purification and treatment mainly includes zero-valent metal nanoparticles, metal oxides nanoparticles, carbon nanotubules and nanocomposites.
Answer:
The feedback you provide will help us show you more relevant content in the future.
Explanation: