B. Accelerating a bowling ball from rest to 35 m/s
Explanation:
Accelerating a bowling ball from rest to 35m/s will require more impulse compared to a baseball.
Impulse is the force acting on a body a particular period of time. It is similar to momentum.
When impulse is applied on a body, it change it state from rest and cause motion.
A body with more mass will require a higher impulse to cause it to accelerate. Bowling balls are heavier. They require more impulse to make them move.
Learn more:
Momentum brainly.com/question/9484203
#learnwithBrainly
Answer:
Work done by friction force= change in total Energy
so,
W= (friction force)*d= (mu*N)*(35)
so,
mu*m*g*35= 1/2*m*v^2
so,
mu= 0.5*(25.7)^2/(9.81*35)
solving it,
mu = 0.9618
Explanation:
Answer:
k=320N/m
Explanation:
Step one:
given data
Let the initial/equilibrum position be x
mass m1= 0.2kg
F1= 0.2*10= 2N
elongation e= 9.5cm= 0.095m
mass m2=1kg
F2=1*10= 10N
elongation e= 12cm= 0.12m
Step two:
From Hooke's law, which states that provided the elastic limits of a material is not exceeded the extention e is proportional to applied Force F
F=ke
2=k(0.095-a)
2=0.095k-ka----------1
10=k(0.12-a)
10=0.12k-ka----------2
solving equation 1 and 2 simultaneously
10=0.12k-ka----------2
- 2=0.095k-ka----------1
8=0.025k-0
divide both side by 0.025
k=8/0.025
k=320N/m
Answer:
The force required to begin to lift the pole from the end 'A' is 240 N
Explanation:
The given parameters for the pole AB are;
The length of the pole, l = 10.0 m
The weight of the pole, W = 600 N ↓
The distance of the center of gravity of the pole from the side 'A' = 4.0 m
Let '
' represent the force required to begin to lift the pole from the end 'A' and let a force applied in the upwards direction be positive
For equilibrium, the sum of moment about the point 'B' = 0, therefore, taking moment about 'B', we have
× 10.0 m - W × 4.0 m = 0
∴
× 10.0 m = W × 4.0 m = 600 N × 4.0 m
× 10.0 m = 600 N × 4.0 m
∴
= 600 N × 4.0 m/(10.0 m) = 240 N
The force required to begin to lift the pole from the end 'A',
= 240 N.
Answer:
23.49m
Explanation:
Distance = velocity x time
8.7 x 2.7 = 23.49m