We can calculate the acceleration of Cole due to friction using Newton's second law of motion:

where

is the frictional force (with a negative sign, since the force acts against the direction of motion) and m=100 kg is the mass of Cole and the sled. By rearranging the equation, we find

Now we can use the following formula to calculate the distance covered by Cole and the sled before stopping:

where

is the final speed of the sled

is the initial speed

is the distance covered
By rearranging the equation, we find d:
Answer:
14.36 N
Explanation:
= Tension in string 1
= Tension in string 2
= mass of the bar = 2.7 kg
= weight of the bar
weight of the bar is given as
N
= mass of the bar = 1.35 kg
= weight of the monkey
weight of the monkey is given as
N
Using equilibrium of torque about left end
N
Using equilibrium of force in vertical direction
N
<span>We put a motion detector at </span>one end of the track<span> and put a cart on the track. ... Next, we put a motorized fan on the cart and let it push the cart down the track. ... This is what I would expect based on the velocity graph, since </span>acceleration<span> equals the slope of the velocity graph, which remains</span>constant<span> in time.</span>
Answer:
A hypothesis is an idea or explanation that you then test through study and experimentation.