Answer:
Both roots are imaginary roots.
Explanation:
Consider these things:
If we try to solve x²+1 = 0, notice that we aren't able to solve the equation in Real Number system because there are no negative outputs for quadratic function.
Remember that quadratic function has range greater or equal to the max-min value.
x-axis plane represents the solutions of that equation. If a graph intersects x-axis plane then it has a solution.
While a graph that doesn't have any intersects on x-plane, it means that the equation for that graph doesn't have real solutions but imaginary solutions.
As you may notice some of parabola graph has one intersect, two intersects or none. One intersect is one solution to the equation — Two intersects are two solutions of the equation and lastly, no intersects mean that no real solutions and remain only imaginary solution.
Answer:
a) Pabs = 48960 KPa
b) T = 433.332 °C
Explanation:
∴ d = 1000 Kg/m³
∴ g = 9.8 m/s²
∴ h = 5000 m
∴ P gauge = - 40 KPa * ( 1000 Pa / KPa ) = - 40000 Pa; Pa≡Kg/m*s²
⇒ Pabs = - 40000 Kg/ms² + ( 1000 Kg/m³ * 9.8 m/s² * 5000 m )
⇒ Pabs = 48960000 Pa = 48960 KPa
a) at that height and pressure, we find the temperature at which the water boils by means of an almost-exponential graph which has the following equation:
P(T) = 0.61094 exp ( 17.625*T / ( T + 243.04 ))......P (KPa) ∧ T (°C)....from literature
∴ P = 48960 KPa
⇒ ( 48960 KPa / 0.61094 ) = exp ( 17.625T / (T+ 243.04))
⇒ 80138.803 = exp ( 17.625T / ( T + 243.04))
⇒ Ln ( 80138.803) = 17.625T / ( T + 243.04))
⇒ 11.292 * ( T + 243.04 ) = 17.625T
⇒ 11.292T + 2744.289 = 17.625T
⇒ 2744.289 = 17.625T - 11.292T
⇒ 2744.289 = 6.333T
⇒ T = 433.332 °C
Answer:
A) (3.2g)
Explanation:
Did you reposed this? Because I remember answering this
Measure how much water has gone in, so you know the concentration.