You would be correct.
Because you have only JUST released the arrow, and how close he is to the target, it would have the same amount of energy when it strikes the target. Yes, the kinetic energy would be destroyed when you hit the target but not right away. And yes, the potential energy would also be destroyed once you release the arrow, but it goes straight back once it stops moving, aka when it hits the target, although it has only just stopped moving.
Hope this helps!
Answer:
Induced current, I = 18.88 A
Explanation:
It is given that,
Number of turns, N = 78
Radius of the circular coil, r = 34 cm = 0.34 m
Magnetic field changes from 2.4 T to 0.4 T in 2 s.
Resistance of the coil, R = 1.5 ohms
We need to find the magnitude of the induced current in the coil. The induced emf is given by :

Where
is the rate of change of magnetic flux,
And 



Using Ohm's law, 
Induced current, 

I = 18.88 A
So, the magnitude of the induced current in the coil is 18.88 A. Hence, this is the required solution.
Answer:
The answer is below
Explanation:
The length of the rope is equal to the radius of the circle formed by the complete rotation of the rope. Therefore the radius = 1.50 m.
a) The distance covered by the rope when completing one rotation is the same as the perimeter of the circle. Hence:
Distance covered in one rotation = 2π * radius = 2π * 1.5 = 3π meters
The velocity of the ball = Distance / time = 3π meters / 3.4 seconds = 2.77 m/s
b) The initial velocity (u) is 0 m/s, the final velocity is 2.77 m/s during time (t) = 3.4 s. Hence acceleration (a):
v = u + at
2.77 = 3.4a
a = 0.82 m/s²
c) Force on ball = mass * acceleration = 4 * 0.82 = 3.28 N