I think this type of equation could be conducted in simple division equation since it does not involve drop rate.
we know that there is 500 ml of substance and should be infused within 8 hours period.
So the flow rate in ml/hr would be:
500/8 = 62.5 ml/hr
Even though the wind "tries" to flow from high pressure to low pressure, the turning of the Earth causes the air flow to turn to the right (in the Northern Hemisphere), so the jet stream flows around the air masses, rather than directly from one to the other.
One form of Ohm's Law says . . . . . Resistance = Voltage / Current .
R = V / I
R = (12 v) / (0.025 A)
R = (12 / 0.025) (V/I)
<em>R = 480 Ohms</em>
I don't know if the current in the bulb is steady, because I don't know what a car's "accumulator" is. (Floogle isn't sure either.)
If you're referring to the car's battery, then the current is quite steady, because the battery is a purely DC storage container.
If you're referring to the car's "alternator" ... the thing that generates electrical energy in a car to keep the battery charged ... then the current is pulsating DC, because that's the form of the alternator's output.
Answer:
<em>His angular velocity will increase.</em>
Explanation:
According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.
The angular momentum of a system =
'ω'
where
' is the initial rotational inertia
ω' is the initial angular velocity
the rotational inertia = 
where m is the mass of the system
and r' is the initial radius of rotation
Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.
we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to
.
From
'ω' =
ω
since
is now reduced, ω will be greater than ω'
therefore, the angular velocity increases.