Answer:
122.5 N/m
Explanation:
According to the law of conservation of energy, if there is no air resistance or frictional forces, the initial elastic potential energy of the spring toy is entirely converted into gravitational potential energy when the toy reaches the highest point.
Therefore, we can write:

where the term on the left is the initial elastic potential energy while the term on the right is the gravitational potential energy, and where
k is the spring constant
x = 0.02 m is the compression of the spring
m = 0.01 kg is the mass of the toy
h = 0.25 m is the height reached by the toy
is the acceleration due to gravity
Solving for k,

This can be solve by using a triangle, because the path of the plane formed a triangle. first solve the angle form by the second direction
angle = 180 - 51 - 22 = 107 degrees
then using the cosine law
c^2 = a^2 + b^2 - 2ab cos C
c^2 = 76^2 + 123^2 - 2 ( 76) ( 123) cos ( 107)
c = 162.4 mi <span>the crew fly to go directly to the field
</span>
Answer:
ma= ma
m⋅a = m⋅a
And equivalently:
am=ma
a⋅m = m⋅a
Explanation:
Question
Assuming this question "Similar to what you see in your textbook, you can generally omit the multiplication symbol as you answer questions online, except when the symbol is needed to make your meaning clear. For example, 1*10^5 is not the same as 110^5 . When you need to be explicit, type * (Shift + 8) to insert the multiplication operator. You will see a multiplication dot (⋅) appear in the answer box. Do not use the symbol x. For example, for the expression ma,
typing m⋅a would be correct, but mxa would be incorrect".
Solution to the problem
For this case we want to write a expression for ma, and based on the previous info we can write:
ma= ma
m⋅a = m⋅a
And equivalently:
am=ma
a⋅m = m⋅a
But is not correct do this:
mxa=mxa
axm = mxa
Answer:
The small car and the truck experience the same average force.
Explanation:
The average net force will be the resultant force of the average forces of both vehicles. On collision, they'll both experience the same impact force, but the deceleration and deformation felt by the individual vehicle will be proportional to the mass of the vehicle. This is why it will seem like the car will have more force but is not actually so.
Acceleration equals 24 km/s
Average equals 396km/s