When an electric current is flowing through a wire, there is a magnetic <em>field</em> produced.  The lines of magnetic force are circles around the wire.
 
        
             
        
        
        
Two half lives so it is 4000 years old
        
                    
             
        
        
        
Hi there!
We can begin by calculating the time taken to reach its highest point (when the vertical velocity = 0).
Remember to break the velocity into its vertical and horizontal components.
Thus:
0 = vi - at
0 = 16sin(33°) - 9.8(t)
9.8t = 16sin(33°)
t = .889 sec
Find the max height by plugging this time into the equation:
Δd = vit + 1/2at²
Δd = (16sin(33°))(.889) + 1/2(-9.8)(.889)²
Solve:
Δd = 7.747 - 3.873 = 3.8744 m
 
        
                    
             
        
        
        
Answer:
The voltage across a semiconductor bar is 0.068 V.
Explanation:
Given that,
Current = 0.17 A
Electron concentration 
Electron mobility 
Length = 0.1 mm
Area = 500 μm²
We need to calculate the resistivity
Using formula of resistivity


Put the value into the formula


We need to calculate the resistance
Using formula of resistance



We need to calculate the voltage
Using formula of voltage

Put the value into the formula


Hence, The voltage across a semiconductor bar is 0.068 V.