Answer: reaction force = -558N
Explanation:
w = f = 558N
since action force and reaction force are equal in magnitude and opposite in direction,
reaction force = -(f)
reaction force = -558N
if that helps.
The level of greenhouse gases in our atmosphere would decrease, due to less automobiles.
Answer:
A. It must be zero
Explanation:
A spacecraft leaves the solar system at a velocity of 1,500 m/s. The net force on this spacecraft is zero. What can we say about the spacecraft's acceleration?
According to Newton's second law
Force = Mass × acceleration
If the net force is zero
0 = mass × acceleration
0 = ma
a = 0/m
a = 0m/s²
this shows that the acceleration will be zero If the net force is zero
Answer: when you increase or decrease your speed.
Explanation:
Moving a skate at rest, you need to apply force in order to cause acceleration.
F = ma Where
F = force applied
m = mass of the skate
a = acceleration
The initial velocity u will be equal to zero and the skate will acceleration to a certain velocity.
as you skate down your neighborhood sidewalk, you will accelerate when you increase your speed. Because
Acceleration is the rate of change of velocity. That is,
Acceleration = change in velocity/ time.
And also, you will decelerate when you reduce the speed or velocity down your neighborhood sidewalk.
Answer:

Explanation:
Given:
- file size to be transmitted,

- transmission rate of data,

- propagation speed,

- distance of data transfer,

<u>Now the delay in data transfer from source to destination for each 10 Mb:</u>



<u>Now this time is taken for each 10 Mb of data transfer and we have 30 Mb to transfer:</u>
So,


