I think this question is a true statement :)
Answer for your question is;
2,6 = 8
The first shell is 2 electrons the other shell is 6 electrons
Answer:
Neon
The highest density among the inert gases is of Neon (Ne). This a factual data. Thus the highest density among given options is of Ne, as all the options are of inert gases.
Explanation:
hope it helps u
FOLLOW MY ACCOUNT PLS PLS
According to the law of conservation of mass, what is the same on both sides of a balanced chemical equation?
A. the volume of the substances
B. the subscripts
C. the total mass of atoms
D. the coefficients
Answer:
A balanced equation demonstrates the conservation of mass by having the same number of each type of atom on both sides of the arrow.
Explanation:
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ... Use coefficients of products and reactants to balance the number of atoms of an element on both sides of a chemical equation.
Consider the balanced equation for the combustion of methane.
CH
4
+
2O
2
→
CO
2
+
2H
2
O
All balanced chemical equations must have the same number of each type of atom on both sides of the arrow.
In this equation, we have 1
C
atom, 4
H
atoms, and 4
O
atoms on each side of the arrow.
The number of atoms does not change, so the total mass of all the atoms is the same before and after the reaction. Mass is conserved.
Here is a video that discusses the importance of balancing a chemical equation.
Answer:
0.3793 M
Explanation:
The unknown metal is zinc. So the equation of the reaction is;
Zn(s) + Cu^2+(aq) -------> Zn^2+(aq) + Cu(s)
From Nernst equation;
E = E° - 0.0592/n log Q
[Cu2+] = 0.050179 M
n = 2
[Zn^2+] = ?
E = 1.074 V
E° = 0.34 - (-0.76) = 1.1 V
Substituting values;
1.074 = 1.1 - 0.0592/2 log [Zn^2+]/0.050179
1.074 - 1.1 = - 0.0592/2 log [Zn^2+]/0.050179
-0.026 = -0.0296 log [Zn^2+]/0.050179
-0.026/-0.0296 = log [Zn^2+]/0.050179
0.8784 =log [Zn^2+]/0.050179
Antilog(0.8784) = [Zn^2+]/0.050179
7.558 = [Zn^2+]/0.050179
[Zn^2+] = 7.558 * 0.050179
[Zn^2+] = 0.3793 M